Building RAG Chatbot for Movie Recommendations with Qdrant and Open AI

Create a recommendation tool without hallucinations based on RAG with the Qdrant Vector database. This example is based on movie recommendations on the IMDB-top1000 dataset. You can provide your wishes and your "big no's" to the chatbot, for example: "A movie about wizards but not Harry Potter", and get top-3 recommendations.

How it works a video with the full design process Upload IMDB-1000 dataset to Qdrant Vector Store, embedding movie descriptions with OpenAI; Set up an AI agent with a chat. This agent will call a workflow tool to get movie recommendations based on a request written in the chat; Create a workflow which calls Qdrant's Recommendation API to retrieve top-3 recommendations of movies based on your positive and negative examples.

Set Up Steps You'll need to create a free tier Qdrant Cluster (Qdrant can also be used locally; it's open-sourced) and set up API credentials You'll OpenAI credentials You'll need GitHub credentials & to upload the IMDB Kaggle dataset to your GitHub.

0
Downloads
31112
Views
8.74
Quality Score
advanced
Complexity
Author:Jenny (View Original →)
Created:8/14/2025
Updated:9/25/2025

🔒 Please log in to import templates to n8n and favorite templates

Workflow Visualization

Loading...

Preparing workflow renderer

Comments (0)

Login to post comments