Recipe Recommendations with Qdrant and Mistral
This n8n workflow demonstrates creating a recipe recommendation chatbot using the Qdrant vector store recommendation API.
Use this example to build recommendation features in your AI Agents for your users.
How it works
For our recipes, we'll use HelloFresh's weekly course and recipes for data. We'll scrape the website for this data. Each recipe is split, vectorised and inserted into a Qdrant Collection using Mistral Embeddings Additionally the whole recipe is stored in a SQLite database for later retrieval. Our AI Agent is setup to recommend recipes from our Qdrant vector store. However, instead of the default similarity search, we'll use the Recommendation API instead. Qdrant's Recommendation API allows you to provide a negative prompt; in our case, the user can specify recipes or ingredients to avoid. The AI Agent is now able to suggest a recipe recommendation better suited for the user and increase customer satisfaction.
Requirements
Qdrant vector store instance to save the recipes Mistral.ai account for embeddings and LLM agent
Customising the workflow
This workflow can work for a variety of different audiences. Try different sets of data such as clothes, sports shoes, vehicles or even holidays.
Related Templates
Automate Daily Keyword Research with Google Sheets, Suggest API & Custom Search
Who's it for This workflow is perfect for SEO specialists, marketers, bloggers, and content creators who want to automa...
USDT And TRC20 Wallet Tracker API Workflow for n8n
Overview This n8n workflow is specifically designed to monitor USDT TRC20 transactions within a specified wallet. It u...
Bulk Automated Google Drive Files Sharing and Direct Download Link Generation
This N8N workflow automates the process of sharing files from Google Drive. It includes OAuth2 authentication, batch pro...
🔒 Please log in to import templates to n8n and favorite templates
Workflow Visualization
Loading...
Preparing workflow renderer
Comments (0)
Login to post comments