by Yaron Been
Replace manual task prioritization with intelligent AI reasoning that thinks like a Chief Operating Officer. This workflow automatically fetches your Asana tasks every morning, analyzes them using advanced AI models, and delivers the single most critical task with detailed reasoning - ensuring your team always focuses on what matters most. ✨ What This Workflow Does: 📋 Automated Task Collection**: Fetches all assigned Asana tasks daily at 9 AM 🤖 AI-Powered Analysis**: Uses OpenAI GPT-4 to evaluate urgency, impact, and strategic importance 🎯 Smart Prioritization**: Identifies the #1 most critical task with detailed reasoning 🧠 Contextual Memory**: Leverages vector database for historical context and pattern recognition 💾 Structured Storage**: Saves prioritized tasks to PostgreSQL with full audit trail 🔄 Continuous Learning**: Builds organizational knowledge over time for better decisions 🔧 Key Features: Daily automation** with zero manual intervention Context-aware AI** that learns from past prioritization decisions Strategic reasoning** explaining why each task is prioritized Vector-powered memory** using Pinecone for intelligent context retrieval Clean structured output** with task names, priority levels, and detailed justifications Database integration** for reporting and historical analysis 📋 Prerequisites: Asana account with API access OpenAI API key (GPT-4 recommended) PostgreSQL database Pinecone account (for vector storage and context) 🎯 Perfect For: Operations teams managing multiple competing priorities Startups needing systematic task management Project managers juggling complex workflows Leadership teams requiring strategic focus Any organization wanting AI-driven operational intelligence 💡 How It Works: Morning Automation: Triggers every day at 9 AM Data Collection: Pulls all relevant tasks from Asana AI Analysis: Evaluates each task using COO-level strategic thinking Context Retrieval: Searches vector database for similar past tasks Smart Prioritization: Identifies the single most important task Structured Output: Delivers priority level with detailed reasoning Data Storage: Saves results for reporting and continuous improvement 📦 What You Get: Complete n8n workflow with all AI components configured PostgreSQL database schema for task storage Vector database setup for contextual intelligence Comprehensive documentation and setup guide Sample task data and output examples 💡 Need Help or Want to Learn More? Created by Yaron Been - Automation & AI Specialist 📧 Support: Yaron@nofluff.online 🎥 YouTube Tutorials: https://www.youtube.com/@YaronBeen/videos 💼 LinkedIn: https://www.linkedin.com/in/yaronbeen/ Discover more advanced automation workflows and AI integration tutorials on my channels! 🏷️ Tags: AI, OpenAI, Asana, Task Management, COO, Prioritization, Automation, Vector Database, Operations, GPT-4
by Yulia
This n8n workflow was developed to evaluate and categorize incoming leads based on certain criteria. The workflow is triggered by adding a new row in a Google Sheets document. The workflow uses the OpenAI node to process the lead information. The system query contains detailed qualification rules and the response format. The user message contains the data for the individual lead. The JSON response from the OpenAI node is then processed by the Edit Fields node to extract the response. This response is merged together with the original lead data by the Merge node. Finally, the Google Sheets node updates the original lead entry in the Google Sheets document with the qualification result ("qualified" or "not qualified") in a separate column. This allows for easy tracking and sorting of the qualified leads.
by n8n Team
This workflow is designed to compare two datasets (Dataset 1 and Dataset 2) based on a common field, "fruit," and provide insights into the differences. Here are the steps: Manual Trigger: The workflow begins when a user clicks "Execute Workflow." Dataset 1: This node generates the first dataset containing information about fruits, such as apple, orange, grape, strawberry, and banana, along with their colors. Dataset 2: This node generates the second dataset, also containing information about fruits, but with some variations in color. For example, it includes a "kiwi" with the color "mostly green." Compare Datasets: The "Compare Datasets" node takes both datasets and compares them based on the "fruit" field. It identifies any differences or matches between the two datasets. In summary, this workflow is used to compare two datasets of fruits and their colors, identify differences, and provide guidance on how to explore the comparison results.
by David Olusola
When you fill out the form with business challenges and requirements GPT-4 analyzes the input and generates a customized proposal using your template System automatically creates a Google Slides presentation with personalized content Professional proposal email is sent directly to the prospect with the presentation link Set up steps Estimated time: 15-20 minutes Connect your OpenAI API key for GPT-4 access Link your Google account for Slides and Gmail integration Create your proposal template in Google Slides with placeholder variables Customize the AI prompt and email template with your branding Test with sample data and activate the workflow
by Harshil Agrawal
This workflow allows you to add positive feedback messages to a table in Notion. Prerequisites Create a Typeform that contains Long Text filed question type to accepts feedback from users. Get your Typeform credentials by following the steps mentioned in the documentation. Follow the steps mentioned in the documentation to create credentials for Google Cloud Natural Language. Create a page on Notion similar to this page. Create credentials for the Notion node by following the steps in the documentation. Follow the steps mentioned in the documentation to create credentials for Slack. Follow the steps mentioned in the documentation to create credentials for Trello. Typeform Trigger node: Whenever a user submits a response to the Typeform, the Typeform Trigger node will trigger the workflow. The node returns the response that the user has submitted in the form. Google Cloud Natural Language node: This node analyses the sentiment of the response the user has provided and gives a score. IF node: The IF node uses the score provided by the Google Cloud Natural Language node and checks if the score is positive (larger than 0). If the score is positive we get the result as True, otherwise False. Notion node: This node gets connected to the true branch of the IF node. It adds the positive feedback shared by the user in a table in Notion. Slack node: This node will share the positive feedback along with the score and username to a channel in Slack. Trello node: If the score is negative, the Trello node is executed. This node will create a card on Trello with the feedback from the user.
by jason
If you have made some investments in cryptocurrency, this workflow will allow you to create an Airtable base that will update the value of your portfolio every hour. You can then track how well your investments are doing. You can check out my Airtable base to see how it works or even copy my base so that you can customize this workflow for yourself. To implement this workflow, you will need to update the Airtable nodes with your own credentials and make sure that they are pointing to your Airtable
by Paul Taylor
📩 Gmail → GPT → Supabase | Task Extractor This n8n workflow automates the extraction of actionable tasks from unread Gmail messages using OpenAI's GPT API, stores the resulting task metadata in Supabase, and avoids re-processing previously handled emails. ✅ What It Does Triggers on a schedule to check for unread emails in your Gmail inbox. Loops through each email individually using SplitInBatches. Checks Supabase to see if the email has already been processed. If it's a new email: Formats the email content into a structured GPT prompt Calls ChatGPT-4o to extract structured task data Inserts the result into your emails table in Supabase 🧰 Prerequisites Before using this workflow, you must have: An active n8n Cloud or self-hosted instance A connected Gmail account with OAuth credentials in n8n A Supabase project with an emails table and: ALTER TABLE emails ADD CONSTRAINT unique_email_id UNIQUE (email_id); An OpenAI API key with access to GPT-4o or GPT-3.5-turbo 🔐 Required Credentials | Name | Type | Description | |-----------------|------------|-----------------------------------| | Gmail OAuth | Gmail | To pull unread messages | | OpenAI API Key | OpenAI | To generate task summaries | | Supabase API | HTTP | For inserting rows via REST API | 🔁 Environment Variables or Replacements Supabase_TaskManagement_URI → e.g., https://your-project.supabase.co Supabase_TaskManagement_ANON_KEY → Your Supabase anon key These are used in the HTTP request to Supabase. ⏰ Scheduling / Trigger Triggered using a Schedule node Default: every X minutes (adjust to your preference) Uses a Gmail API filter: unread emails with label = INBOX 🧠 Intended Use Case > Designed for productivity-minded professionals who want to extract, summarize, and store actionable tasks from incoming email — without processing the same email twice or wasting GPT API credits. This is part of a larger system integrating GPT, calendar scheduling, and optional task platforms (like ClickUp). 📦 Output (Stored in Supabase) Each processed email includes: email_id subject sender received_at body (email snippet) gpt_summary (structured task) requires_deep_work (from GPT logic) deleted (initially false)
by Fenngbrotalk
n8n Workflow: AI-Powered Stock Chart Analysis Bot for Telegram This is a powerful n8n automation workflow that integrates a Telegram bot with OpenAI's multimodal large language model (GPT-4 Vision) to provide users with real-time stock chart analysis. Workflow Breakdown Receive Image:** The workflow is initiated by a Telegram Trigger. It activates whenever a user sends an image (e.g., a stock's candlestick chart) to a designated Telegram chat, automatically downloading the file. Image Pre-processing:** To optimize the AI's performance and efficiency, the Edit Image node resizes the incoming image to a standard 512x512 pixel format. AI Vision Analysis:** The processed image is then passed to a LangChain Chain, which utilizes the OpenAI GPT-4 Vision model. A sophisticated system prompt instructs the AI to act as a professional stock analyst. Intelligent Interpretation:** The AI analyzes the image to identify the stock's name, price trend (uptrend, downtrend, or sideways), key support/resistance levels, and volume changes. It then generates a comprehensive analysis report combining technical indicators and market sentiment. Structured Output:** To ensure reliability and consistency, the AI's output is parsed into a specific JSON format. This structure includes a search_word (for the industry/sector) and the main content (the analysis text). Send Response:** Finally, the workflow extracts the content field from the JSON output and uses the Telegram node to send this professional analysis back to the user as a text message in the same chat. Key Features User-Friendly:** Users simply send an image to get an analysis, requiring no complex commands. Instant & Efficient:** The entire analysis and response process is fully automated and completed within moments. Professional-Grade Analysis:** Leverages the advanced image recognition and reasoning capabilities of GPT-4 Vision to deliver insights comparable to those of a human analyst. Reliable & Consistent:** The use of structured output ensures that the format of the response is always consistent and easy to read or process further.
by Mohan Gopal
🏖️ AI-Based Tour Itineraries via Email Using OpenAI & Pinecone Vector Search Overview This workflow automates the process of handling new tour package requests received via email, analyzes the request, and provides personalized tour package recommendations using AI and a vector database. It’s designed to streamline customer interactions and deliver quick, relevant responses. Precondition Create a Embedded Tour Package Database (refer to the link below): Pinecone Database setup Register and create API Keys for OpenAI, Pinecone Database. Copy Mail Credentials to access Email Inbox from n8n node This workflow automates the process of extracting tour information from PDF files stored in a Google Drive folder, processes and vectorizes the extracted data, and stores it in a Pinecone vector database for efficient querying. This is especially useful for building AI-powered search or recommendation systems for travel packages. 🛠️ Tools & Nodes Used Email Trigger (IMAP): Monitors the inbox for new tour package requests. Text Classifier: Categorizes incoming emails (e.g., New Request, Follow-up, Other). Code Node: Extracts and structures relevant data from the email (subject, sender, content, etc.). Tour Recommendation AI Agent: An AI agent that interprets the request and formulates a prompt for package recommendations. OpenAI & OpenRouter Chat Models: Used for natural language understanding and generating responses. Simple Memory: Maintains context for ongoing conversations. Pinecone Vector Store: Stores and retrieves tour packages using semantic search. Embeddings (OpenAI): Converts text data into vector embeddings for similarity search. Answer Questions with a Vector Store: Retrieves the most relevant packages from Pinecone. Send Email: Sends the AI-generated recommendations back to the customer. 🔄 Process & Flow Email Reception: The workflow starts with the Email Trigger (IMAP) node, which listens for new emails in the inbox. Classification: The Text Classifier node determines if the email is a new tour package request. Data Extraction: The Code node parses the email, extracting key details like sender, subject, and content. AI Agent Processing: The Tour Recommendation AI Agent receives the structured request and crafts a prompt for package recommendations. Vector Search: The agent queries the Pinecone Vector Store, which holds previously created tour packages, using OpenAI embeddings for semantic matching. Recommendation Generation: The AI agent selects the top 3 most relevant packages and generates a friendly, personalized response. Response Delivery: The Send Email node sends the recommendations back to the customer. 🚀 Recommendations & Improvements for Next Version Error Handling: Add error handling nodes to manage failed email parsing or AI response issues. Logging & Analytics: Integrate logging to track requests, recommendations, and customer responses for continuous improvement. Personalization: Enhance the AI agent to consider customer history or preferences for even more tailored recommendations. Multi-language Support: Add language detection and translation for international customers. Feedback Loop: Include a mechanism for customers to rate recommendations, feeding this data back into the system for improved future suggestions. Attachment Handling: Enable the workflow to process attachments (e.g., customer itineraries or preferences). Scalability: Consider batching or queueing requests if email volume increases. 💡 Conclusion This workflow demonstrates how n8n, combined with AI and vector databases, can automate and personalize customer service in the travel industry. With a few enhancements, it can become even more robust and customer-centric!
by Nicolas Le Gallo
Who is this template for ? Basically anyone involved in recurring recruiting processes and looking to save a considerable amount of time and energy (Talent acquisitions Managers, recruiting consultants, hiring managers, founders…etc) What it does : It takes a messy and raw transcript from an “intake meeting” between a recruiter and a Hiring manager and turns it into a clean and exhaustive brief + scorecard templates for each interview rounds It does it under 1 MINUTE while the usual “manual” process usually takes several hours How to customize this workflow to your needs Google doc is the default choice because it allows easy modification of the output, but you can choose to output this under any format and / or store it wherever you want I strongly suggest to choose one of the latest LLM models for better output quality Both LLM prompts can be revised to match your expectations better
by MRJ
Modular Hazard Analysis Workflow : Free Version Business Value Proposition Accelerates ISO 26262 compliance for automotive/industrial systems by automating safety analysis while maintaining rigorous audit standards. :chart_with_upwards_trend: Key Benefits Time Instant report generation vs. weeks of documentation for HAZOP Risk Mitigation Pre-validated templates reduce human error Quick guide Input a systems_description file to the workflow Provide an OPENAI_API_KEY to the chat model. You can also replace the chat model with the model of your interest. :play_or_pause_button: Running the Workflow Refer to the github repo to understand in detail about how the workflow can be used :email: Contact For collaboration proposals or security issues, contact me by Email. :warning: Validation & Limitations AI-Assisted Analysis Considerations | Advantage | Mitigation Strategy | Implementation Example | |-----------|---------------------|------------------------| | Rapid hazard identification | Human validation layer | Manual review nodes in workflow | | Consistent S/E/C scoring | Rule-based validation | ASIL-D → Redundancy check | | Edge case coverage | Cross-reference with historical data | Integration with incident databases |
by n8n Team
This workflow generates CSV files containing a list of 10 random users with specific characteristics using OpenAI's GPT-4 model. It then splits this data into batches, converts it to CSV format, and saves it to disk for further use. The execution of the workflow begins from here when triggered manually. "OpenAI" Node. This uses the OpenAI API to generate random user data. The input to the OpenAI API is a fixed string, which asks for a list of 10 random users with some specific attributes. The attributes include a name and surname starting with the same letter, a subscription status, and a subscription date (if they are subscribed). There is also a short example of the JSON object structure. This technique is called one-shot prompting. "Split In Batches" Node. This node is used to handle the OpenAI responses one by one. "Parse JSON" Node. This node converts the content of the message received from the OpenAI node (which is in string format) into a JSON object. "Make JSON Table" Node. This node is used to convert the JSON data into a tabular format, which is easier to handle for further data processing. "Convert to CSV" Node. This node converts the table format data received from the "Make JSON Table" node into CSV format and assigns a file name. "Save to Disk" Node. This node is used to save the CSV generated in the previous node to disk in the ".n8n" directory. The workflow is designed in a circular manner. So, after saving the file to disk, it goes back to the "Split In Batches" node to process the OpenAI output, until all batches are processed.