by Agent Studio
This workflow is an experiment to integrate charts in AI Agents, using the new Structured Output from OpenAI and Quickchart.io. How it works Users chat with an AI Agent. Anytime the AI Agent considers a chart is needed, it calls a tool to generate a chart OpenAI generates a chart using the Quickchart definition This object is added at the end of a Quickchart.io URL (see documentation) The url is added in the conversation via the AI Agent as markdown. Set up steps Create an OpenAI API Key Create the OpenAI credentials Use the credentials for the HTTP Request node (as Predefined Credential type) Activate your workflow Start chatting For example, you can ask the AI Agent to generate a chart about the top 5 movies at the box office Start exploring the limits Shout-out Quickchart.io is an amazing open source project that provides a free API to test. Go check them out! Example of chart
by Parnain
What This Workflow Does: This n8n workflow automatically generates an AI-powered summary and relevant tags whenever a new row is added to your Notion database. Simply save any URL to your Notion database using the [Notion Web Clipper] Chrome extension or [Save to Notion]—on both desktop and mobile. This keeps all your saved content organized in one place instead of scattered across different platforms. How it works: The workflow is triggered when a new row is added to your Notion database (it checks for updates every minute). It retrieves the content from the saved URL. An AI agent analyzes the content to generate a summary and relevant tags. The AI output is then formatted properly. Finally, the formatted summary and tags are saved into the appropriate columns in your Notion database. Notes: Make sure your Notion database includes the following columns: URL – Stores the content URL you want to summarize. AI Summary – Where the AI-generated summary will be added. Tags – Where the AI-generated tags will be saved.
by Automate With Marc
🤖 AI Customer Support Agent with Google Docs Knowledge (Telegram + OpenAI) This no-code workflow turns your Telegram bot into an intelligent, always-on AI support agent that references your business documentation in Google Docs to respond to customer queries—instantly and accurately. Watch full step-by-step video tutorial of the build here: https://youtu.be/Mlv7CjGO7wI 🔧 How it works: Telegram Trigger – Captures incoming messages from users on your Telegram bot Langchain AI Agent (OpenAI GPT) – Interprets the message and uses RAG (retrieval-augmented generation) techniques to craft an answer Google Docs Tool – Connects to and retrieves context from your specified Google Doc (e.g. FAQ, SOPs, policies) Memory Buffer – Keeps track of recent chat history for more human-like conversations Telegram Reply Node – Sends the AI-generated response back to the user 💡 Use Cases: E-commerce customer service SaaS product onboarding Internal helpdesk bot for teams WhatsApp-style support for digital businesses 🧠 What makes this powerful: Supports complex questions by referencing a live Google Doc knowledge base Works in plain conversational language (no buttons or forms needed) Runs 24/7 with zero code Easily extendable to Slack, WhatsApp, or email support 🛠️ Tools used: Telegram Node (trigger + send) Langchain Agent with OpenAI GPT Google Docs Tool Memory Buffer Sticky Notes for easy understanding
by Laura Piraux
Use case This automation is for teams working in Notion. When you have a lot of back and forth in the comment section, it’s easy to lose track of what is going on in the conversation. This automation relies on AI to generate a summary of the comment section. How it works Every hour (the trigger can be adapted to your need and usecase), the automation checks if new comments have been added to the pages of your Notion database. If there are new comments, the comments are sent to an AI model to write a summary. The summary is then added to a predefined page property. The automation also updates a “Last execution” property. This prevents to re-generate the AI summary when no new comments have been received. Setup Define your Notion variables: Notion database, property that will hold the AI summary, property that will hold the last execution date of the automation. Set up your Notion credentials. Set up your AI model credentials (API key). How to adjust it to your needs Use the LLM model of your choice. In this template, I used Gemini but you can easily replace it by ChatGPT, Claude, etc. Adapt the prompt to your use case to get better summaries: specify the maximum number of characters, give an example, etc. Adapt the trigger to your needs. You could use Notion webhooks as trigger in order to run the automation only when a new comment is added (this setup is advised if you’re on n8n cloud version).
by Mariano Kostelec
A fully automated content engine that researches, writes, scores, and visualizes LinkedIn posts — built with n8n, OpenAI, Perplexity, and Replicate. What it does: ✅ Researches any topic using real-time data ✅ Writes a personalized post in your voice ✅ Refines tone and structure ✅ Generates abstract, high-quality visual assets ✅ Scores the output and saves it to Google Sheets How it works: Triggered when you change a row status in Google Sheets Uses Perplexity to research GPT-4o (OpenAI) to create and polish content Replicate (FLUX Pro) to generate images Scores the post using heuristics Appends everything back to your sheet
by Mathieu R
Intro: The purpose of this workflow is to simply convert you planned Grocery delivery confirmation email to a Google Calendar event in your family calendar. While based on a Monoprix.fr email format, it is applicable/adaptable to almost anything else. How it works: It is triggered by reception of the confirmation email on your Gmail. The workflow then extracts relevant data using ChatGPT, formats it, and creates a Google Calendar event. Steps to use it: Import template in your n8n Update credentials for Gmail, Google Calendar, and ChatGPT Test workflow based on confirmation email received Activate workflow
by Akram Kadri
Who is this for? This workflow is designed for YouTubers who want to update their video descriptions in bulk without manually editing each one. It's especially useful for creators who include a standard set of links in their descriptions and need to insert a new link between existing ones across multiple videos. What problem does this workflow solve? Manually updating video descriptions for multiple videos can be tedious and time-consuming. If you have a section in your video descriptions that contains important links, adding a new one in a specific position (e.g., between two existing links) can be a challenge. This workflow automates that process, allowing you to insert a specific string between two predefined rows in all of your video descriptions at once. What this workflow does Fetches all videos from your YouTube channel. Iterates through each video to retrieve its existing description. Identifies two predefined rows in the description. Inserts a new row between the two specified rows. Updates the video description with the modified text. Setup Connect your YouTube account to n8n and grant necessary permissions. Define your variables in the "Set String to Insert" node: rowBefore: The existing row after which the new row will be inserted. rowToInsert: The new text or link to insert. rowAfter: The existing row before which the new row will be inserted. Run the workflow using the manual trigger. Review the updated descriptions to ensure accuracy. How to customize this workflow to your needs Change the insertion criteria** by modifying the rowBefore and rowAfter values. Insert multiple rows** by adjusting the JavaScript code in the Code node. Extend the workflow** by adding conditions (e.g., only updating descriptions of videos with certain tags). Filter specific** videos instead of updating all by modifying the "Get All Videos" node. This workflow ensures that all your YouTube descriptions stay updated and consistent with minimal effort.
by David Olusola
This workflow analyzes images submitted via a form using OpenAI Vision, then delivers the analysis result directly to your Telegram chat. ✅ Use case examples: • Users submit screenshots for instant AI interpretation • Automated document or receipt analysis with Telegram delivery • Quick OCR or image classification workflows ⸻ ⚙️ Setup Guide Form Submission Trigger • Connect your form app (e.g. Typeform, Tally, or n8n’s own webhook form) to the On form submission trigger node. • Ensure it sends the image file or URL as input. OpenAI Vision Analysis • In the OpenAI node, select Analyze Image operation. • Provide your OpenAI API key and configure the prompt to instruct the model on what to analyze (e.g. “Describe this receipt in detail”). Set Telegram Chat ID • Use this manual node to input your Telegram Chat ID for delivery. • Alternatively, automate this with a database lookup or user session if building for multiple users. Telegram Delivery Node • Connect your Telegram Bot to n8n using your bot token. • Set up the sendMessage operation, using the analysis result from the previous node as the message text. Testing • Click Execute workflow. • Submit an image via your form and confirm it delivers to your Telegram as expected.
by Praveena
Idea The idea for app came since I wanted to build a unique gift for my niece because she gets excited for her birthday (which Im going to miss this year). The web app has a simple countdown (in html and JS) but more importantly, there is an AI agent that will answer some specific questions and know her preferences. How it works The questions from app are sent via web hook to N8N which has pulls preferences file (about her likes, dislikes, personality) from postgre and AI Agent that will answer questions/respond. The current status is stored back in postgre (especially about status of cat and universe happenings) before responding back. Features Integrated AI chatbot via N8N webhook Persistent conversation history Minimizable chat interface Fallback support for offline testing Features: -- Wheres Mittens - This is a query to track her lost cat in multiverse. -- Multiverse updates with recent update stored Pre Requisites Postgre SQL database is available. Alternatively, use any other database but change the N8N nodes. LLM Api Key. Step by Step Instructions Export this N8N Workflow. Modify LLM API Key, I used openAI, 4.1 For web app scofflding,you will need Node, HTML and Javascript. I've created a mini version using Node and JS with web app and N8N connection settings here: <https://github.com/productiser/FiBirthdayAgent> PostgreSQL Database Script (1 table for memory and context storage): CREATE TABLE fifi_world_context ( id TEXT PRIMARY KEY, -- e.g., 'agent_fifi' cat_location TEXT, -- e.g., "Bubble Nebula" cat_activity TEXT, -- e.g., "Playing laser tag with moon mice" fifi_preferences JSONB, -- e.g., likes/dislikes/foods/shows world_history TEXT, -- Summary of narrative events last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP ); 5.Modify system prompt as per your needs. Built With N8N Self hosted Self hosted web app Hosted on Vercel Total spend = <£1 (AI costs only) Total Time = <1 day Support Watch this video for web app overview and how it looks. <https://youtu.be/e7PlrTdvwoM> Contact me on info@pankstr.com/ superllmuser@gmail.com for any queries Hope you enjoy!!
by Dmytro
AI-Powered Product Assistant for E-commerce Transform your online store customer service with an intelligent AI assistant that automatically processes customer inquiries, searches your product database, and provides personalized responses about product availability, pricing, and specifications. Perfect for shoe stores, fashion retailers, and any business with extensive product catalogs - this workflow eliminates manual customer service while increasing response speed and accuracy. How it works Customer sends product inquiry via webhook (Instagram DM, website chat, or messaging app) AI extracts key product details (brand, model, size, color) from natural language text System searches your Google Sheets product database with smart filtering AI generates friendly, personalized response with availability, pricing, and stock information Automatic response sent back to customer with product details or alternatives Screenshots: Customer inquiry: "Do you have Nike Air Max 40 size?" AI response: "Nike Air Max 90, size 40 - in stock 3 pieces, price 120$" Set up steps Prepare your product database - Create Google Sheets with columns: Brand, Model, Size, Color, Price, Quantity Configure AI settings - Connect OpenAI API for natural language processing Set up webhook endpoint - Configure trigger for your messaging platform (Instagram, Telegram, website chat) Test with sample inquiries - Verify AI correctly parses requests and finds products Deploy and monitor - Launch your automated assistant and track performance Time investment: 30-45 minutes setup, works immediately with any product catalog up to 1000+ items.
by Yar Malik (Asfandyar)
How it works Trigger: Listens for an incoming chat message Copy Assistant: Feeds the message (plus memory) into an OpenAI Chat Model and exposes two “tools” Cold Email Writer Tool Sales Letter Tool• Tool execution: Depending on the user’s intent, the appropriate tool generates the copy • Save output: Writes the generated email or sales letter into your target document via the Update a document node Set up steps • Configure your OpenAI Chat Model credentials in n8n (no hard-coded keys!) • Add and authenticate the Simple Memory credential (to keep context across messages) • Create Google Docs (or MS Word) credentials for the Update a document node • Ensure your Chat trigger is pointing at your incoming-message endpoint • Mandatory: Drop sticky-note annotations on each tool node explaining where to enter API keys and how to tweak prompts Once everything’s wired up, send a test chat message like “Write me a cold email for a fintech startup” and watch the workflow spin up a polished draft in your document. How to use Import the workflow JSON into n8n. Configure your Chat trigger (webhook or form) to receive incoming messages. Send a chat prompt like: “Write me a cold email for a B2B SaaS offering.” The “Copy Assistant” custom GPT picks the right tool (Cold Email or Sales Letter). Generated copy is written directly into your linked Google Doc or Word document. Requirements OpenAI API Key (with Chat Completions & Custom GPTs enabled) Custom Assistant created in your ChatGPT dashboard (Assistant ID pasted into the Chat Model node) n8n instance (Cloud or self-hosted) with credentials set up for: Simple Memory (to persist context) Google Docs or Microsoft Word (for document output) Customising this workflow Tweak system and user prompts inside the Copy Assistant node to fit your brand voice. Swap in Slack, Teams or email nodes instead of a document writer to deliver copy where you need it. Add or remove tools (e.g., “Follow-up Email Writer”) by duplicating the existing tool pattern. Use sticky-note annotations on every node to explain where to enter API keys, Assistant IDs, or prompt tweaks.
by Alexander Bentlund
Search music and play to Spotify from Telegram This workflow is a simple demonstration on accessing a message model from Telegram and it makes searching for songs an easy task even if you can't remember the artist or song name. An OpenAI message model tries to figure out the song and sends it to an active Spotify device**. Use case Imagine an office where you play music in the background and the employees can control the music without having to login to the playing account. How it works You describe the song in Telegram. Telegram bot sends the text to n8n. An OpenAI message model tries to find the song. Spotify gets the search query string. First match is then added to queue. -- If there is no match a message is sent to Telegram and the process ends. We change to the next track in the list. We make sure the song starts playing by trying to resume. We fetch the currently playing track. We return "now playing" information to Telegram: Song Name - Artist Name - Album Name. Error handling Every Spotify step has it's on error handler under settings where we output the error. Message parser receives the error and sends it to Telegram. Requirements Active workflow* OpenAI API key Telegram bot Spotify account and Oauth2 API Spotify active on a device** .* The Telegram trigger is activated only if this workflow is active. You can however TEST the workflow in the editor by clicking "Test step" and then it waits for the Telegram event. When event is received, just step through all steps or just clicking "Test step" on the "Fetch Now Playing" node. .** You must have a Spotify device active when trying to communicate with a device. Open Spotify and play something - not it is active.