by Amit Mehta
N8N Workflow: Printify Automation - Update Title and Description - AlexK1919 This workflow automates the process of getting products from Printify, generating new titles and descriptions using OpenAI, and updating those products. How it Works This workflow automatically retrieves a list of products from a Printify store, processes them to generate new titles and descriptions based on brand guidelines and custom instructions, and then updates the products on Printify with the new information. It also interacts with Google Sheets to track the status of the products being processed. The workflow can be triggered both manually or by an update in a Google Sheet. Use Cases E-commerce Automation**: Automating content updates for a Printify store. Marketing & SEO**: Generating SEO-friendly or seasonal content for products using AI. Product Management**: Batch-updating product titles and descriptions without manual effort. Setup Instructions Printify API Credentials: Set up httpHeaderAuth credentials for Printify to allow the workflow to get and update products. OpenAI API Credentials: Provide an API key for OpenAI in the openAiApi credentials. Google Sheets Credentials: The workflow requires two separate Google Sheets credentials: one for the trigger (googleSheetsTriggerOAuth2Api) and another for appending/updating data (googleSheetsOAuth2Api). Google Sheets Setup: You need a Google Sheet to store product information and track the status of the updates. The workflow is linked to a specific spreadsheet. Brand Guidelines: The Brand Guidelines + Custom Instructions node must be updated with your specific brand details and any custom instructions for the AI. Workflow Logic Trigger: The workflow can be triggered manually or by an update in a Google Sheet when the upload column is changed to "yes". Get Product Info: It fetches the shop ID and then a list of all products from Printify. Process Products: The product data is split, and the workflow loops through each product. AI Content Generation: For each product, the Generate Title and Desc node uses OpenAI to create a new title and description based on the original content, brand guidelines, and custom instructions. Google Sheets Update: The workflow appends the product information and a "Product Processing" status to a Google Sheet. It then updates the row with the newly generated title and description, and changes the status to "Option added". Printify Update: The Printify - Update Product node sends a PUT request to the Printify API to apply the new title and description to the product. Node Descriptions | Node Name | Description | |-----------|-------------| | When clicking 'Test workflow' | A manual trigger for testing the workflow. | | Google Sheets Trigger | An automated trigger that starts the workflow when the upload column in the Google Sheet is updated. | | Printify - Get Shops | Fetches the list of shops associated with the Printify account. | | Printify - Get Products | Retrieves all products from the specified Printify shop. | | Brand Guidelines + Custom Instructions | A Set node to store brand guidelines and custom instructions for the AI. | | Generate Title and Desc | An OpenAI node that generates a new title and description based on the provided inputs. | | GS - Add Product Option | Appends a new row to a Google Sheet to track the processing status of a product. | | Update Product Option | Updates an existing row in the Google Sheet with the new product information and status. | | Printify - Update Product | A PUT request to the Printify API to update a product with new information. | Customization Tips You can swap out the Printify API calls with similar services like Printful or Vistaprint. Modify the Brand Guidelines + Custom Instructions node to change the brand name, tone, or specific instructions for the AI. Change the number of options the workflow should generate by modifying the Number of Options node. You can change the OpenAI model used in the Generate Title and Desc node, for example, from gpt-4o-mini to another model. Suggested Sticky Notes for Workflow "Update your Brand Guidelines before running this workflow. You can also add custom instructions for the AI node." "You can swap out the API calls to similar services like Printful, Vistaprint, etc." "Set the Number of Options you'd like for the Title and Description" Required Files 1V1gcK6vyczRqdZC_Printify_Automation_-Update_Title_and_Description-_AlexK1919.json: The main n8n workflow export for this automation. The Google Sheets template for this workflow. Testing Tips Run the workflow with the manual trigger to see the flow from start to finish. Change the upload column in the Google Sheet to "yes" to test the automated trigger. Verify that the new titles and descriptions are correctly updated on Printify. Suggested Tags & Categories Printify OpenAI
by Abdul Mir
Overview Automate your entire LinkedIn content machine — from research and image generation to scheduling and posting — with this AI-powered workflow. This workflow pulls in past content ideas, researches new ones using Perplexity, generates a new post (with image) using your brand's voice and style, saves the output to Google Sheets, and auto-posts twice a week to LinkedIn. It’s perfect for founders, creators, and marketers who want to stay consistent on LinkedIn without manually writing or designing every post. Who’s it for Solo founders or marketers building a LinkedIn presence Content creators growing their audience Agencies managing client content calendars Anyone who wants to post consistently without spending hours on content How it works Pulls old ideas from a Google Sheet Schedules content creation using n8n’s cron node Uses Perplexity to research current topics and trends Feeds the data into an AI agent (like Claude or GPT) to generate post copy Creates a branded image using a reference style and OpenAI’s image model Saves post content + image URL into Google Sheets Twice a week, selects one ready post, downloads the image, and publishes it to LinkedIn How to set up Add your Google Sheet ID and column names for posts Connect your OpenAI (or Claude) and Perplexity API keys Upload a brand-style reference image to Google Drive Configure your LinkedIn account and connect the node Adjust the cron schedule for both post creation and auto-posting (Optional) Edit the AI prompt to match your personal voice or niche Requirements Google Drive & Sheets access OpenAI or Claude API key Perplexity API key LinkedIn credentials (via n8n’s LinkedIn integration) How to customize Change the prompt for the AI to fit your voice or audience Swap out Perplexity for another research method Adjust how often you want posts scheduled or published Swap LinkedIn for Twitter, Slack, or another platform Add Notion or Airtable as your CMS backend
by Muhammad Farooq Iqbal
Google NanoBanana Model Image Editor for Consistent AI Influencer Creation with Kie AI Image Generation & Enhancement Workflow This n8n template demonstrates how to use Kie.ai's powerful image generation models to create and enhance images using AI, with automated story creation, image upscaling, and organized file management through Google Drive and Sheets. Use cases include: AI-powered content creation for social media, automated story visualization with consistent characters, marketing material generation, and high-quality image enhancement workflows. Good to know The workflow uses Kie.ai's google/nano-banana-edit model for image generation and nano-banana-upscale for 4x image enhancement Images are automatically organized in Google Drive with timestamped folders Progress is tracked in Google Sheets with status updates throughout the process The workflow includes face enhancement during upscaling for better portrait results All generated content is automatically saved and organized for easy access How it works Project Setup: Creates a timestamped folder structure in Google Drive and initializes a Google Sheet for tracking Story Generation: Uses OpenAI GPT-4 to create detailed prompts for image generation based on predefined templates Image Creation: Sends the AI-generated prompt along with 5 reference images to Kie.ai's nano-banana-edit model Status Monitoring: Polls the Kie.ai API to monitor task completion with automatic retry logic Image Enhancement: Upscales the generated image 4x using nano-banana-upscale with face enhancement File Management: Downloads, uploads, and organizes all generated content in the appropriate Google Drive folders Progress Tracking: Updates Google Sheets with status information and image URLs throughout the entire process Key Features Automated Story Creation**: AI-powered prompt generation for consistent, cinematic image creation Multi-Stage Processing**: Image generation followed by intelligent upscaling Smart Organization**: Automatic folder creation with timestamps and file management Progress Tracking**: Real-time status updates in Google Sheets Error Handling**: Built-in retry logic and failure state management Face Enhancement**: Specialized enhancement for portrait images during upscaling How to use Manual Trigger: The workflow starts with a manual trigger (easily replaceable with webhooks, forms, or scheduled triggers) Automatic Processing: Once triggered, the entire pipeline runs automatically Monitor Progress: Check the Google Sheet for real-time status updates Access Results: Find your generated and enhanced images in the organized Google Drive folders Requirements Kie.ai Account**: For AI image generation and upscaling services OpenAI API**: For intelligent prompt generation (GPT-4 mini) Google Drive**: For file storage and organization Google Sheets**: For progress tracking and status monitoring Customizing this workflow This workflow is highly adaptable for various use cases: Content Creation**: Modify prompts for different styles (fashion, product photography, architectural visualization) Batch Processing**: Add loops to process multiple prompts or reference images Social Media**: Integrate with social platforms for automatic posting E-commerce**: Adapt for product visualization and marketing materials Storytelling**: Create sequential images for visual narratives or storyboards The modular design makes it easy to add additional processing steps, change AI models, or integrate with other services as needed. Workflow Components Folder Management**: Dynamic folder creation with timestamp naming AI Integration**: OpenAI for prompts, Kie.ai for image processing File Processing**: Binary handling, URL management, and format conversion Status Tracking**: Multi-stage progress monitoring with Google Sheets Error Handling**: Comprehensive retry and failure management systems
by Arthur Dimeglio
What this workflow does Automatically: fetches fresh news, filters out aggregators/PR wires and duplicates, writes a human-sounding LinkedIn post with GPT, downloads the article image to verify it’s usable, publishes to LinkedIn (with or without media), and logs the posted titles in Firestore to avoid re-posting. Runs on a daily schedule (cron) and supports two post variants: • Case 1: article has a description → richer post • Case 2: no description → short, still human and casual ⸻ How it works (high level flow) • Schedule Trigger (0 10,12,19,21 * * *): runs at 10:00, 12:00, 19:00, 21:00 (server timezone). • Firestore (Get Previous News Titles): loads previously posted titles (document asma/x20) to de-dupe. • HTTP Request (API NEWS): calls newsapi.org with query “AI Startup” for example, last 24–48h window, searchIn=title, sorted by publishedAt. • Code: Select Articles: • excludes Biztoc and common aggregators/PR wires (Techmeme, TheFly, PRNewswire, GlobeNewswire, MarketWatch press-releases, Medium, Substack, Yahoo consent, etc.), • requires valid URL + image, • groups by topic (normalized title + domain) and picks the best representative, • sorts by recency and returns up to 10 unique articles. • IF (URL & De-dupe checks): ensures link present and not already posted (compares against Firestore titles). • IF (Description Checker): branches on presence of description. • LLM Agents (2 prompts): generate a casual, human LinkedIn post in English (no emojis/links/markdown, 2–3 hashtags). • Post setup: cleans the text, passes the image URL forward. • HTTP Request (Image Downloader): retrieves the image as a file to confirm the link works. • LinkedIn Publisher: • If image OK → posts with media. • Otherwise → posts text-only. • Time Checkers + Firestore Upserts: after a successful publish, writes the article’s title to Firestore (asma/x20 fields title10, title12, title19, title21) so it won’t be posted again at other times. ⸻ Credentials & prerequisites • NewsAPI.org: API key (free tier works to start; mind rate limits). • LinkedIn OAuth2: connected account with permission to create posts on your profile (uses “Person” target in the node). • Google Firebase (Firestore): Service Account with read/write to the asma collection. The workflow uses document ID x20. ⸻ Setup (5 minutes) Import the workflow and open it in n8n. In API NEWS, set your NewsAPI key in the query param apiKey. In Get Previous News Titles and Firebase Article Saver [1–8], attach your Google Service Account and confirm projectId, collection=asma. In LinkedIn Publisher [1–4], attach your LinkedIn OAuth credential and ensure the Person is your profile URN. (Optional) Adjust the cron in Hourly trigger (server timezone). (Optional) Change the search query (q=AI startup), language, or time window in API NEWS. Enable the workflow. ⸻ Customization tips • Search scope: edit q, language, from/to in API NEWS to cover your niche. • Aggregator policy: tweak the aggregatorDomains set in the Select Articles code node. • Post voice: modify the LLM prompt (keeps the “human, slightly messy” tone). • Hashtags: the prompt ends with 2–3 simple tags (#AI #Startups #Innovation) — change as you like. • Posting times: change the cron or the downstream time-checker logic to map specific titles → time slots. • No-image fallback: text-only path is already handled; replace with a placeholder image if you prefer always-with-media. ⸻ Notes & constraints • Timezone: Schedule Trigger uses the n8n server timezone; adjust if your LinkedIn audience is elsewhere. • De-dupe: this template stores last posted titles in one Firestore doc (asma/x20) under title10, title12, title19, title21. You can change the schema or keep a rolling history. • Filtering: items missing URL or image are skipped by design. Yahoo consent pages are also skipped. • LLM costs: posts are short; usage is modest, but keep an eye on your OpenAI billing. • NewsAPI limits: free plans throttle requests; consider caching or widening the time window if you hit limits. ⸻ Troubleshooting • Nothing posts: check NewsAPI quota/response, then see the URL checker and Description Checker branches. • Image errors: some sites block hotlinking; the image download step will fall back to text-only posting. • Duplicates appeared: verify Firestore upserts executed after posting and that your comparison uses the right fields. • Wrong hours: confirm your n8n instance timezone and the cron expression. ⸻ Why this template You get a robust “news → LinkedIn” autoposter that feels authentically human (no corporate vibes), avoids low-quality aggregators, prevents duplicates, and gracefully handles media — all with clean, modular nodes that are easy to tweak.
by Kirill Khatkevich
This workflow transforms raw Meta Ads data into actionable, expert-level insights. It acts as a virtual performance marketer, analyzing each creative's performance, comparing it against your historical benchmarks, and delivering clear recommendations on whether to scale, optimize, or stop the ad. By running parallel analyses with both OpenAI and Gemini, it provides a unique, dual-perspective evaluation. This template is the perfect sequel to our "Automation of Creative Testing" workflow but also works powerfully on its own. Use Case Manually sifting through ads manager reports is tedious, and identifying true winners from early data is challenging. This workflow solves these problems by automating the entire analysis pipeline. It's designed for performance marketing teams who need to: Make faster, data-driven decisions on which creatives to scale. Get objective, AI-powered second opinions on ad performance. Systematically evaluate creatives against consistent, pre-defined benchmarks. Maintain a central log in Google Sheets with both raw metrics and qualitative AI analysis. Save hours spent on manual data crunching and report generation. How it Works The workflow is structured into three logical stages: Configuration & Data Ingestion: A central ⚙️ Set parameters node holds all key variables: the data source (Meta or Sheets), campaign_id, and, most importantly, your historical performance benchmarks as a simple text block. An IF node directs the workflow to fetch data either directly from a Meta Ads campaign or from a specified Google Sheet (ideal for analyzing a curated list of ads). Data Processing & AI Analysis (Parallel Execution): After fetching raw performance data (spend, impressions, clicks, actions), the workflow splits into three parallel branches for maximum resilience: Branch 1 (Data Logging): Immediately writes or updates a row in Google Sheets with the raw metrics for the creative. This ensures no data is lost, even if the AI analysis fails. Branch 2 (OpenAI Analysis): Prepares a CSV string of the creative's data, sends it along with the benchmarks to an OpenAI model (e.g., GPT-4), and instructs it to return a structured JSON analysis. Branch 3 (Gemini Analysis): Performs the exact same process but using Google's Gemini model via a LangChain agent, providing a second, independent evaluation. Results Aggregation: The results from both AI models are received as structured JSON. Two final Google Sheets nodes take these results and update the original row (matching by AdID), adding the evaluation, significance, summary, and recommendation into separate columns. The final sheet contains a complete picture: raw data side-by-side with analyses from two different AIs. Setup Instructions Credentials: 1.1 Connect your Meta Ads account. 1.2 Connect your Google account (for Sheets). 1.3 Connect your OpenAI account. 1.4 Connect your Google Gemini (Palm) account. The ⚙️ Set parameters Node: This is the central control panel. Open this first Set node and customize it: source: Set to "Meta" to pull from a campaign or "sheets" to read from a Google Sheet. campaign_id: If source is "Meta", enter your Meta Campaign ID here. benchmarks_data: This is critical. Paste your own historical performance data here as a CSV-formatted text block. The template includes an example. For best results, use an export from Ads Manager of your top-performing creatives, including key metrics. Google Sheets Nodes: There are three Google Sheets nodes that write data. You need to configure all of them to point to the same spreadsheet and sheet. Ad metrics (for raw metrics): Select your spreadsheet and sheet. Ensure "Operation" is set to Append or Update. Ad data from OpenAI (for OpenAI results): Select the same spreadsheet/sheet. Set "Operation" to Update. Ad data from Gemini (for Gemini results): Select the same spreadsheet/sheet. Set "Operation" to Update. Make sure your sheet has columns for all the data fields, e.g., AdID, FileName, spend, impressions, evaluation, summary, recommendation, evaluation G, summary G, etc. Activate the Workflow: Set your desired frequency in the Schedule Trigger node. Save and activate the workflow. Further Ideas & Customization This powerful analysis engine can be extended even further: Add a "Decision" Node: After the AI analyses are logged, add a final step that compares their recommendations. If both AIs say "scale", automatically increase the ad's budget via the Meta Ads API. Create Summary Reports: Add a branch that, after all ads are processed, calculates an overall summary (e.g., "3 creatives recommended for scaling, 5 for stopping") and sends it to a Slack channel. Dynamic Benchmarks: Instead of pasting benchmarks into the Set node, create a step that reads them from a dedicated "Benchmarks" tab in your Google Sheet, making them even easier to update. Experiment with Prompts and Benchmarks: The quality of the AI analysis is highly dependent on the quality of your input. Don't be afraid to: -- Refine the prompts in the AI Agent and Message a model nodes to better match your specific business context and KPIs. -- Curate your benchmarks_data. Test different sets of benchmark data (e.g., "last 30 days top performers" vs. "all-time best") to see how it influences the AI's recommendations. Finding the right combination of prompt and data is key to unlocking the most effective insights.
by Anthony
How It Works This workflow transforms any webpage into an AI-narrated audio summary delivered via WhatsApp: Receive URL - WhatsApp Trigger captures incoming messages and passes them to URL extraction Extract & validate - Code node extracts URLs using regex and validates format; IF node checks for errors User feedback - Sends either error message ("Please send valid URL") or processing status ("Fetching and analyzing... 10-30 seconds") Fetch webpage - Sub-workflow calls Jina AI Reader (https://r.jina.ai/) to fetch JavaScript-rendered content, bypassing bot blocks Summarize content - GPT-4o-mini processes webpage text in 6000-character chunks, extracts title and generates concise summary Generate audio - OpenAI TTS-1 converts summary text to natural-sounding audio (Opus format for WhatsApp compatibility) Deliver result - WhatsApp node sends audio message back to user with summary Why Jina AI? Many modern websites (like digibyte.io) require JavaScript to load content. Standard HTTP requests only fetch the initial HTML skeleton ("JavaScript must be enabled"). Jina AI executes JavaScript and returns clean, readable text. Setup Steps Time estimate: ~20-25 minutes 1. WhatsApp Business API Setup (10-15 minutes) Create Meta Developer App** - Go to https://developers.facebook.com/, create Business app, add WhatsApp product Get Phone Number ID** - Use Meta's test number or register your own business phone Generate System User Token** - Create at https://business.facebook.com/latest/settings/system_users (permanent token, no 4-hour expiry) Configure Webhook** - Point to your n8n instance URL, subscribe to "messages" events Verify business** - Meta requires 3-5 verification steps (business, app, phone, system user) 2. Configure n8n Credentials (5 minutes) OpenAI** - Add API key in Credentials → OpenAI (used in 2 places: "Convert Summary to Audio" and "OpenAI Chat Model" in sub-workflow) WhatsApp OAuth** - Add in WhatsApp Trigger node using System User token from step 1 WhatsApp API** - Add in all WhatsApp action nodes (Send Error, Send Processing, Send Audio) using same token 3. Link Sub-Workflow (3 minutes) Ensure "[SUB] Get Webpage Summary" workflow is activated In "Get Webpage Summary" node, select the sub-workflow from dropdown Verify workflow ID matches: QglZjvjdZ16BisPN 4. Update Phone Number IDs (2 minutes) Copy your Phone Number ID from Meta console Update in all WhatsApp nodes: Send Error Message, Send Processing Message, Send Audio Summary 5. Test the Flow (2 minutes) Activate both workflows (sub-workflow first, then main) Send test message to WhatsApp: https://example.com Verify: Processing message arrives → Audio summary delivered within 30 seconds Important Notes WhatsApp Caveats: 24-hour window** - Can't auto-message users after 24 hours unless they message first (send "Hi" each morning to reset) Verification fatigue** - Meta requires multiple business verifications; budget 30-60 minutes if first time Test vs Production** - Test numbers work for single users; production requires business verification Audio Format: Using Opus codec (optimal for WhatsApp, smaller file size than MP3) Speed set to 1.0 (normal pace) - adjust in "Convert Summary to Audio" node if needed Cost: ~$0.015 per minute of audio generated Jina AI Integration: Free tier** works for basic use (no API key required) Handles JavaScript-heavy sites automatically Add Authorization: Bearer YOUR_KEY header for higher limits Alternative: Replace with Playwright/Puppeteer for self-hosted rendering Cost Breakdown (per summary): GPT-4o-mini summarization: ~$0.005-0.015 OpenAI TTS audio: ~$0.005-0.015 WhatsApp messages: Free (up to 1,000/month) Total: ~$0.01-0.03 per summary** Troubleshooting: "Cannot read properties of undefined" → Status update, not message (code node returns null correctly) "JavaScript must be enabled" → Website needs Jina AI (already implemented in Fetch site texts node) Audio not sending → Check binary data field is named data in TTS node No webhook received → Verify n8n URL is publicly accessible and webhook subscription includes "messages" Pro Tips: Change voice in TTS node: alloy (neutral), echo (male), nova (female), shimmer (soft) Adjust summary length: Modify chunkSize: 6000 in sub-workflow's Text Splitter node (lower = faster but less detailed) Add rate limiting: Insert Code node after trigger to track user requests per hour Store summaries: Add database node after "Clean up" to archive for later retrieval The Use Cases: Executive commuting - Consume industry news hands-free Research students - Cover 3x more sources while multitasking Visually impaired - Access any webpage via natural audio Sales teams - Research prospects on the go Content creators - Monitor competitors while exercising
by Trung Tran
📄 Auto Extract Contacts from Business Cards to Sheet With GPT4o > This smart workflow extracts names, phone numbers, emails, and more from uploaded name card photos using AI, then logs them neatly into your Google Sheet. No typing. No mess. Just upload and go. 👤 Who’s it for Sales & Business Development Teams Recruiters & Talent Acquisition Specialists Event Teams collecting business cards Admins who manage contact databases manually ⚙️ How it works / What it does This workflow automates the extraction of contact details from uploaded name card (business card) images and stores them in a structured Google Sheet for easy tracking and follow-up. Workflow Steps: User uploads one or more name card images through a web form. The uploaded files are saved to a Google Drive folder for archiving. A smart AI agent (with OCR and GPT capabilities) scans each image and extracts relevant contact data into structured JSON format. Data is transformed, cleaned (e.g., removing + from phone numbers), and filtered. Valid contacts are appended to a Google Sheet for central tracking and future use. 🛠 How to set up Create a Form Allow file upload (JPG/PNG format). Label it as “Name Card Uploader” with a clear description. Upload to Google Drive Use the Google Drive node to store uploaded images. Configure Smart Agent Use GPT-4o or similar model with OCR capability. Apply a structured output parser to extract contact fields like name, phone, email, company, etc. Transform Data Use the Code node to clean and structure contact info. Strip out unwanted characters from phone numbers (e.g., +). Filter Invalid Records Remove entries with no meaningful contact data. Append to Google Sheets Use the Google Sheets node with "Append Sheet Row". Map fields to columns like Name, Phone, Email, etc. ✅ Requirements n8n workflow environment Google Drive integration (for file storage) Google Sheets integration (for storing contacts) GPT-4o or any image-capable LLM Clear name card images (PNG/JPG, readable text) (Optional) Slack/email integration for notifications 🧩 How to customize the workflow CRM Sync**: Connect to platforms like HubSpot, Salesforce, or Zoho. Validation Logic**: Ensure records contain key fields like name or email before writing. Uploader Info**: Attach submitter metadata to each contact record. Language Adaptation**: Adjust extracted field labels/output to target your preferred language. Batch Upload**: Handle multiple cards in a single image or multiple uploads in one go.
by Cj Elijah Garay
Discord AI Content Moderator with Learning System This n8n template demonstrates how to automatically moderate Discord messages using AI-powered content analysis that learns from your community standards. It continuously monitors your server, intelligently flags problematic content while allowing context-appropriate language, and provides a complete audit trail for all moderation actions. Use cases are many: Try moderating a forex trading community where enthusiasm runs high, protecting a gaming server from toxic behavior while keeping banter alive, or maintaining professional standards in a business Discord without being overly strict! Good to know This workflow uses OpenAI's GPT-5 Mini model which incurs API costs per message analyzed (approximately $0.001-0.003 per moderation check depending on message volume) The workflow runs every minute by default - adjust the Schedule Trigger interval based on your server activity and budget Discord API rate limits apply - the batch processor includes 1.5-second delays between deletions to prevent rate limiting You'll need a Google Sheet to store training examples - a template link is provided in the workflow notes The AI analyzes context and intent, not just keywords - "I *cking love this community" won't be deleted, but "you guys are sht" will be Deleted messages cannot be recovered from Discord - the admin notification channel preserves the content for review How it works The Schedule Trigger activates every minute to check for new messages requiring moderation We'll fetch training data from Google Sheets containing labeled examples of messages to delete (with reasons) and messages to keep The workflow retrieves the last 10 messages from your specified Discord channel using the Discord API A preparation node formats both the training examples and recent messages into a structured prompt with unique indices for each message The AI Agent (powered by GPT-5 Mini) analyzes each message against your community standards, considering intent and context rather than just keywords The AI returns a JSON array of message indices that violate guidelines (e.g., [0, 2, 5]) A parsing node extracts these indices, validates them, removes duplicates, and maps them to actual Discord message objects The batch processor loops through each flagged message one at a time to prevent API rate limiting and ensure proper error handling Each message is deleted from Discord using the exact message ID A 1.5-second wait prevents hitting Discord's rate limits between operations Finally, an admin notification is posted to your designated admin channel with the deleted message's author, ID, and original content for audit purposes How to use Replace the Discord Server ID, Moderated Channel ID, and Admin Channel ID in the "Edit Fields" node with your server's specific IDs Create a copy of the provided Google Sheets template with columns: message_content, should_delete (YES/NO), and reason Connect your Discord OAuth2 credentials (requires bot permissions for reading messages, deleting messages, and posting to channels) Add your OpenAI API key to access GPT-5 Mini Customize the AI Agent's system message to reflect your specific community standards and tone Adjust the message fetch limit (default: 10) based on your server activity - higher limits cost more per run but catch more violations Consider changing the Schedule Trigger from every minute to every 3-5 minutes if you have a smaller community Requirements Discord OAuth2 credentials for bot authentication with message read, delete, and send permissions Google Sheets API connection for accessing the training data knowledge base OpenAI API key for GPT-5 Mini model access A Google Sheet formatted with message examples, deletion labels, and reasoning Discord Server ID, Channel IDs (moderated + admin) which you can get by enabling Developer Mode in Discord Customising this workflow Try building an emoji-based feedback system where admins can react to notifications with ✅ (correct deletion) or ❌ (wrong deletion) to automatically update your training data Add a severity scoring system that issues warnings for minor violations before deleting messages Implement a user strike system that tracks repeat offenders and automatically applies temporary mutes or bans Expand the AI prompt to categorize violations (spam, harassment, profanity, etc.) and route different types to different admin channels Create a weekly digest that summarizes moderation statistics and trending violation types Add support for monitoring multiple channels by duplicating the Discord message fetch nodes with different channel IDs Integrate with a database instead of Google Sheets for faster lookups and more sophisticated training data management If you have questions Feel free to contact me here: elijahmamuri@gmail.com elijahfxtrading@gmail.com
by Punit
WordPress AI Content Creator Overview Transform a few keywords into professionally written, SEO-optimized WordPress blog posts with custom featured images. This workflow leverages AI to research topics, structure content, write engaging articles, and publish them directly to your WordPress site as drafts ready for review. What This Workflow Does Core Features Keyword-to-Article Generation**: Converts simple keywords into comprehensive, well-structured articles Intelligent Content Planning**: Uses AI to create logical chapter structures and content flow Wikipedia Integration**: Researches factual information to ensure content accuracy and depth Multi-Chapter Writing**: Generates coherent, contextually-aware content across multiple sections Custom Image Creation**: Generates relevant featured images using DALL-E based on article content SEO Optimization**: Creates titles, subtitles, and content optimized for search engines WordPress Integration**: Automatically publishes articles as drafts with proper formatting and featured images Business Value Content Scale**: Produce high-quality blog posts in minutes instead of hours Research Efficiency**: Automatically incorporates factual information from reliable sources Consistency**: Maintains professional tone and structure across all generated content SEO Benefits**: Creates search-engine friendly content with proper HTML formatting Cost Savings**: Reduces need for external content creation services Prerequisites Required Accounts & Credentials WordPress Site with REST API enabled OpenAI API access (GPT-4 and DALL-E models) WordPress Application Password or JWT authentication Public-facing n8n instance for form access (or n8n Cloud) Technical Requirements WordPress REST API v2 enabled (standard on most WordPress sites) WordPress user account with publishing permissions n8n instance with LangChain nodes package installed Setup Instructions Step 1: WordPress Configuration Enable REST API (usually enabled by default): Check that yoursite.com/wp-json/wp/v2/ returns JSON data If not, contact hosting provider or install REST API plugin Create Application Password: In WordPress Admin: Users > Profile Scroll to "Application Passwords" Add new password with name "n8n Integration" Copy the generated password (save securely) Get WordPress Site URL: Note your full WordPress site URL (e.g., https://yourdomain.com) Step 2: OpenAI Configuration Obtain OpenAI API Key: Visit OpenAI Platform Create API key with access to: GPT-4 models (for content generation) DALL-E (for image creation) Add OpenAI Credentials in n8n: Navigate to Settings > Credentials Add "OpenAI API" credential Enter your API key Step 3: WordPress Credentials in n8n Add WordPress API Credentials: In n8n: Settings > Credentials > "WordPress API" URL: Your WordPress site URL Username: Your WordPress username Password: Application password from Step 1 Step 4: Update Workflow Settings Configure Settings Node: Open the "Settings" node Replace wordpress_url value with your actual WordPress URL Keep other settings as default or customize as needed Update Credential References: Ensure all WordPress nodes reference your WordPress credentials Verify OpenAI nodes use your OpenAI credentials Step 5: Deploy Form (Production Use) Activate Workflow: Toggle workflow to "Active" status Note the webhook URL from Form Trigger node Test Form Access: Copy the form URL Test form submission with sample data Verify workflow execution completes successfully Configuration Details Form Customization The form accepts three key inputs: Keywords**: Comma-separated topics for article generation Number of Chapters**: 1-10 chapters for content structure Max Word Count**: Total article length control You can modify form fields by editing the "Form" trigger node: Add additional input fields (category, author, publish date) Change field types (dropdown, checkboxes, file upload) Modify validation rules and requirements AI Content Parameters Article Structure Generation The "Create post title and structure" node uses these parameters: Model**: GPT-4-1106-preview for enhanced reasoning Max Tokens**: 2048 for comprehensive structure planning JSON Output**: Structured data for subsequent processing Chapter Writing The "Create chapters text" node configuration: Model**: GPT-4-0125-preview for consistent writing quality Context Awareness**: Each chapter knows about preceding/following content Word Count Distribution**: Automatically calculates per-chapter length Coherence Checking**: Ensures smooth transitions between sections Image Generation Settings DALL-E parameters in "Generate featured image": Size**: 1792x1024 (optimized for WordPress featured images) Style**: Natural (photographic look) Quality**: HD (higher quality output) Prompt Enhancement**: Adds photography keywords for better results Usage Instructions Basic Workflow Access the Form: Navigate to the form URL provided by the Form Trigger Enter your desired keywords (e.g., "artificial intelligence, machine learning, automation") Select number of chapters (3-5 recommended for most topics) Set word count (1000-2000 words typical) Submit and Wait: Click submit to trigger the workflow Processing takes 2-5 minutes depending on article length Monitor n8n execution log for progress Review Generated Content: Check WordPress admin for new draft post Review article structure and content quality Verify featured image is properly attached Edit as needed before publishing Advanced Usage Custom Prompts Modify AI prompts to change: Writing Style**: Formal, casual, technical, conversational Target Audience**: Beginners, experts, general public Content Focus**: How-to guides, opinion pieces, news analysis SEO Strategy**: Keyword density, meta descriptions, heading structure Bulk Content Creation For multiple articles: Create separate form submissions for each topic Schedule workflow executions with different keywords Use CSV upload to process multiple keyword sets Implement queue system for high-volume processing Expected Outputs Article Structure Generated articles include: SEO-Optimized Title**: Compelling, keyword-rich headline Descriptive Subtitle**: Supporting context for the main title Introduction**: ~60 words introducing the topic Chapter Sections**: Logical flow with HTML formatting Conclusions**: ~60 words summarizing key points Featured Image**: Custom DALL-E generated visual Content Quality Features Factual Accuracy**: Wikipedia integration ensures reliable information Proper HTML Formatting**: Bold, italic, and list elements for readability Logical Flow**: Chapters build upon each other coherently SEO Elements**: Optimized for search engine visibility Professional Tone**: Consistent, engaging writing style WordPress Integration Draft Status**: Articles saved as drafts for review Featured Image**: Automatically uploaded and assigned Proper Formatting**: HTML preserved in WordPress editor Metadata**: Title and content properly structured Troubleshooting Common Issues "No Article Structure Generated" Cause: AI couldn't create valid structure from keywords Solutions: Use more specific, descriptive keywords Reduce number of chapters requested Check OpenAI API quotas and usage Verify keywords are in English (default language) "Chapter Content Missing" Cause: Individual chapter generation failed Solutions: Increase max tokens in chapter generation node Simplify chapter prompts Check for API rate limiting Verify internet connectivity for Wikipedia tool "WordPress Publication Failed" Cause: Authentication or permission issues Solutions: Verify WordPress credentials are correct Check WordPress user has publishing permissions Ensure WordPress REST API is accessible Test WordPress URL accessibility "Featured Image Not Attached" Cause: Image generation or upload failure Solutions: Check DALL-E API access and quotas Verify image upload permissions in WordPress Review image file size and format compatibility Test manual image upload to WordPress Performance Optimization Large Articles (2000+ words) Increase timeout values in HTTP request nodes Consider splitting very long articles into multiple posts Implement progress tracking for user feedback Add retry mechanisms for failed API calls High-Volume Usage Implement queue system for multiple simultaneous requests Add rate limiting to respect OpenAI API limits Consider batch processing for efficiency Monitor and optimize token usage Customization Examples Different Content Types Product Reviews Modify prompts to include: Pros and cons sections Feature comparisons Rating systems Purchase recommendations Technical Tutorials Adjust structure for: Step-by-step instructions Code examples Prerequisites sections Troubleshooting guides News Articles Configure for: Who, what, when, where, why structure Quote integration Fact checking emphasis Timeline organization Alternative Platforms Replace WordPress with Other CMS Ghost**: Use Ghost API for publishing Webflow**: Integrate with Webflow CMS Strapi**: Connect to headless CMS Medium**: Publish to Medium platform Different AI Models Claude**: Replace OpenAI with Anthropic's Claude Gemini**: Use Google's Gemini for content generation Local Models**: Integrate with self-hosted AI models Multiple Models**: Use different models for different tasks Enhanced Features SEO Optimization Add nodes for: Meta Description Generation**: AI-created descriptions Tag Suggestions**: Relevant WordPress tags Internal Linking**: Suggest related content links Schema Markup**: Add structured data Content Enhancement Include additional processing: Plagiarism Checking**: Verify content originality Readability Analysis**: Assess content accessibility Fact Verification**: Multiple source confirmation Image Optimization**: Compress and optimize images Security Considerations API Security Store all credentials securely in n8n credential system Use environment variables for sensitive configuration Regularly rotate API keys and passwords Monitor API usage for unusual activity Content Moderation Review generated content before publishing Implement content filtering for inappropriate material Consider legal implications of auto-generated content Maintain editorial oversight and fact-checking WordPress Security Use application passwords instead of main account password Limit WordPress user permissions to minimum required Keep WordPress and plugins updated Monitor for unauthorized access attempts Legal and Ethical Considerations Content Ownership Understand OpenAI's terms regarding generated content Consider copyright implications for Wikipedia-sourced information Implement proper attribution where required Review content licensing requirements Disclosure Requirements Consider disclosing AI-generated content to readers Follow platform-specific guidelines for automated content Ensure compliance with advertising and content standards Respect intellectual property rights Support and Maintenance Regular Maintenance Monitor OpenAI API usage and costs Update AI prompts based on output quality Review and update Wikipedia search strategies Optimize workflow performance based on usage patterns Quality Assurance Regularly review generated content quality Implement feedback loops for improvement Test workflow with diverse keyword sets Monitor WordPress site performance impact Updates and Improvements Stay updated with OpenAI model improvements Monitor n8n platform updates for new features Engage with community for workflow enhancements Document custom modifications for future reference Cost Optimization OpenAI Usage Monitor token consumption patterns Optimize prompts for efficiency Consider using different models for different tasks Implement usage limits and budgets Alternative Approaches Use local AI models for cost reduction Implement caching for repeated topics Batch similar requests for efficiency Consider hybrid human-AI content creation License and Attribution This workflow template is provided under MIT license. Attribution to original creator appreciated when sharing or modifying. Generated content is subject to OpenAI's usage policies and terms of service.
by AOE Agent Lab
This n8n template demonstrates how to audit your brand’s visibility across multiple AI systems and automatically log the results to Google Sheets. It sends the same prompt to OpenAI, Perplexity, and (optionally) a ChatGPT web actor, then runs sentiment and brand-hierarchy analysis on the responses. Use cases are many: benchmark how often (and how positively) your brand appears in AI answers, compare responses across models, and build a repeatable “AI visibility” report for marketing and comms teams. 💡 Good to know You’ll bring your own API keys for OpenAI and Perplexity. Usage costs depend on your providers’ pricing. The optional APIfy actor automates the ChatGPT web UI and may violate terms of service. Use strictly at your own risk. ⁉ How it works A Manual Trigger starts the workflow (you can replace it with any trigger). Input prompts are read from a Google Sheet (or you can use the included “manual input” node). The prompt is sent to three tools: -- OpenAI (via API) to check baseline LLM knowledge. -- Perplexity (API) to retrieve an answer with citations. -- Optionally, an APIfy actor that scrapes a ChatGPT response (web interface). Responses are normalized and mapped (including citations where available). An LLM-powered sentiment pass classifies each response into: -- Basic Polarity: Positive, Neutral, or Negative -- Emotion Category: Joy, Sadness, Anger, Fear, Disgust, or Surprise -- Brand Hierarchy: ordered list such as Nike>Adidas>Puma The consolidated record (Prompt, LLM, Response, Brand mentioned flag, Brand Hierarchy, Basic Polarity, Emotion Category, Source 1–3/4) is appended to your “Output many models” Google Sheet. A simplified branch shows how to take a single response and push it to a separate sheet. 🗺️ How to use Connect your Google Sheets OAuth and create two tabs: -- Input: a single “Prompt” column -- Output: columns for Prompt, LLM, Response, Brand mentioned, Brand Hierarchy, Basic Polarity, Emotion Category, Source 1, Source 2, Source 3, Source 4 Add your OpenAI and Perplexity credentials. (Optional) Add an APIfy credential (Query Auth with token) if you want the ChatGPT web actor path. Run the Manual Trigger to process prompts in batches and write results to Sheets. Adjust the included “Limit for testing” node or remove it to process more rows. ⚒️ Requirements OpenAI API access (e.g., GPT-4.1-mini / GPT-5 as configured in the template) Perplexity API access (model: sonar) Google Sheets account with OAuth connected in n8n (Optional) APIfy account/token for the ChatGPT web actor 🎨 Customising this workflow Swap the Manual Trigger for a webhook or schedule to run audits automatically. Extend the sentiment analyzer instructions to include brand-specific rules or compliance checks. Track more sources (e.g., additional models or vertical search tools) by duplicating the request→map→append pattern. Add scoring (e.g., “visibility score” per prompt) and charts by pointing the output sheet into Looker Studio or a BI tool.
by Trung Tran
Automated SSL/TLS Certificate Expiry Report for AWS > Automatically generates a weekly report of all AWS ACM certificates, including status, expiry dates, and renewal eligibility. The workflow formats the data into both Markdown (for PDF export to Slack) and HTML (for email summary), helping teams stay on top of certificate compliance and expiration risks. Who’s it for This workflow is designed for DevOps engineers, cloud administrators, and compliance teams who manage AWS infrastructure and need automated weekly visibility into the status of their SSL/TLS certificates in AWS Certificate Manager (ACM). It's ideal for teams that want to reduce the risk of expired certs, track renewal eligibility, and maintain reporting for audit or operational purposes. How it works / What it does This n8n workflow performs the following actions on a weekly schedule: Trigger: Automatically runs once a week using the Weekly schedule trigger. Fetch Certificates: Uses Get many certificates action from AWS Certificate Manager to retrieve all certificate records. Parse Data: Processes and reformats certificate data (dates, booleans, SANs, etc.) into a clean JSON object. Generate Reports: 📄 Markdown Report: Uses the Certificate Summary Markdown Agent (OpenAI) to generate a Markdown report for PDF export. 🌐 HTML Report: Uses the Certificate Summary HTML Agent to generate a styled HTML report for email. Deliver Reports: Converts Markdown to PDF and sends it to Slack as a file. Sends HTML content as a formatted email. How to set up Configure AWS Credentials in n8n to allow access to AWS ACM. Create a new workflow and use the following nodes in sequence: Schedule Trigger: Weekly (e.g., every Monday at 08:00 UTC) AWS ACM → Get many certificates Function Node → Parse ACM Data: Converts and summarizes certificate metadata OpenAI Chat Node (Markdown Agent) with a system/user prompt to generate Markdown Configure Metadata → Define file name and MIME type (.md) Create document file → Converts Markdown to document stream Convert to PDF Slack Node → Upload the PDF to a channel (Optional) Add a second OpenAI Chat Node for generating HTML and sending it via email Connect Output: Markdown report → Slack file upload HTML report → Email node with embedded HTML Requirements 🟩 n8n instance (self-hosted or cloud) 🟦 AWS account with access to ACM 🟨 OpenAI API key (for ChatGPT Agent) 🟥 Slack webhook or OAuth credentials (for file upload) 📧 Email integration (e.g., SMTP or SendGrid) 📝 Permissions to write documents (Google Drive / file node) How to customize the workflow Change report frequency**: Adjust the Weekly schedule trigger to daily or monthly as needed. Filter certificates**: Modify the function node to only include EXPIRED, IN_USE, or INELIGIBLE certs. Add tags or domains to include/exclude. Add visuals**: Enhance the HTML version with colored rows, icons, or company branding. Change delivery channels**: Replace Slack with Microsoft Teams, Discord, or Telegram. Send Markdown as email attachment instead of PDF. Integrate ticketing**: Create a JIRA/GitHub issue for each certificate that is EXPIRED or INELIGIBLE.
by Incrementors
Wikipedia to LinkedIn AI Content Poster with Image via Bright Data 📋 Overview Workflow Description: Automatically scrapes Wikipedia articles, generates AI-powered LinkedIn summaries with custom images, and posts professional content to LinkedIn using Bright Data extraction and intelligent content optimization. 🚀 How It Works The workflow follows these simple steps: Article Input: User submits a Wikipedia article name through a simple form interface Data Extraction: Bright Data scrapes the Wikipedia article content including title and full text AI Summarization: Advanced AI models (OpenAI GPT-4 or Claude) create professional LinkedIn-optimized summaries under 2000 characters Image Generation: Ideogram AI creates relevant visual content based on the article summary LinkedIn Publishing: Automatically posts the summary with generated image to your LinkedIn profile URL Generation: Provides a shareable LinkedIn post URL for easy access and sharing ⚡ Setup Requirements Estimated Setup Time: 10-15 minutes Prerequisites n8n instance (self-hosted or cloud) Bright Data account with Wikipedia dataset access OpenAI API account (for GPT-4 access) Anthropic API account (for Claude access - optional) Ideogram AI account (for image generation) LinkedIn account with API access 🔧 Configuration Steps Step 1: Import Workflow Copy the provided JSON workflow file In n8n: Navigate to Workflows → + Add workflow → Import from JSON Paste the JSON content and click Import Save the workflow with a descriptive name Step 2: Configure API Credentials 🌐 Bright Data Setup Go to Credentials → + Add credential → Bright Data API Enter your Bright Data API token Replace BRIGHT_DATA_API_KEY in all HTTP request nodes Test the connection to ensure access 🤖 OpenAI Setup Configure OpenAI credentials in n8n Ensure GPT-4 model access Link credentials to the "OpenAI Chat Model" node Test API connectivity 🎨 Ideogram AI Setup Obtain Ideogram AI API key Replace IDEOGRAM_API_KEY in the "Image Generate" node Configure image generation parameters Test image generation functionality 💼 LinkedIn Setup Set up LinkedIn OAuth2 credentials in n8n Replace LINKEDIN_PROFILE_ID with your profile ID Configure posting permissions Test posting functionality Step 3: Configure Workflow Parameters Update Node Settings: Form Trigger:** Customize the form title and field labels as needed AI Agent:** Adjust the system message for different content styles Image Generate:** Modify image resolution and rendering speed settings LinkedIn Post:** Configure additional fields like hashtags or mentions Step 4: Test the Workflow Testing Recommendations: Start with a simple Wikipedia article (e.g., "Artificial Intelligence") Monitor each node execution for errors Verify the generated summary quality Check image generation and LinkedIn posting Confirm the final LinkedIn URL generation 🎯 Usage Instructions Running the Workflow Access the Form: Use the generated webhook URL to access the submission form Enter Article Name: Type the exact Wikipedia article title you want to process Submit Request: Click submit to start the automated process Monitor Progress: Check the n8n execution log for real-time progress View Results: The workflow will return a LinkedIn post URL upon completion Expected Output 📝 Content Summary Professional LinkedIn-optimized text Under 2000 characters Engaging and informative tone Bullet points for readability 🖼️ Generated Image High-quality AI-generated visual 1280x704 resolution Relevant to article content Professional appearance 🔗 LinkedIn Post Published to your LinkedIn profile Includes both text and image Shareable public URL Professional formatting 🛠️ Customization Options Content Personalization AI Prompts:** Modify the system message in the AI Agent node to change writing style Character Limits:** Adjust summary length requirements Tone Settings:** Change from professional to casual or technical Hashtag Integration:** Add relevant hashtags to LinkedIn posts Visual Customization Image Style:** Modify Ideogram prompts for different visual styles Resolution:** Change image dimensions based on LinkedIn requirements Rendering Speed:** Balance between speed and quality Brand Elements:** Include company logos or brand colors 🔍 Troubleshooting Common Issues & Solutions ⚠️ Bright Data Connection Issues Verify API key is correctly configured Check dataset access permissions Ensure sufficient API credits Validate Wikipedia article exists 🤖 AI Processing Errors Check OpenAI API quotas and limits Verify model access permissions Review input text length and format Test with simpler article content 🖼️ Image Generation Failures Validate Ideogram API key Check image prompt content Verify API usage limits Test with shorter prompts 💼 LinkedIn Posting Issues Re-authenticate LinkedIn OAuth Check posting permissions Verify profile ID configuration Test with shorter content ⚡ Performance & Limitations Expected Processing Times Wikipedia Scraping:** 30-60 seconds AI Summarization:** 15-30 seconds Image Generation:** 45-90 seconds LinkedIn Posting:** 10-15 seconds Total Workflow:** 2-4 minutes per article Usage Recommendations Best Practices: Use well-known Wikipedia articles for better results Monitor API usage across all services Test content quality before bulk processing Respect LinkedIn posting frequency limits Keep backup of successful configurations 📊 Use Cases 📚 Educational Content Create engaging educational posts from Wikipedia articles on science, history, or technology topics. 🏢 Thought Leadership Transform complex topics into accessible LinkedIn content to establish industry expertise. 📰 Content Marketing Generate regular, informative posts to maintain active LinkedIn presence with minimal effort. 🔬 Research Sharing Quickly summarize and share research findings or scientific discoveries with your network. 🎉 Conclusion This workflow provides a powerful, automated solution for creating professional LinkedIn content from Wikipedia articles. By combining web scraping, AI summarization, image generation, and social media posting, you can maintain an active and engaging LinkedIn presence with minimal manual effort. The workflow is designed to be flexible and customizable, allowing you to adapt the content style, visual elements, and posting frequency to match your professional brand and audience preferences. For any questions or support, please contact: info@incrementors.com or fill out this form: https://www.incrementors.com/contact-us/