by Agent Studio
This workflow is an experiment to integrate charts in AI Agents, using the new Structured Output from OpenAI and Quickchart.io. How it works Users chat with an AI Agent. Anytime the AI Agent considers a chart is needed, it calls a tool to generate a chart OpenAI generates a chart using the Quickchart definition This object is added at the end of a Quickchart.io URL (see documentation) The url is added in the conversation via the AI Agent as markdown. Set up steps Create an OpenAI API Key Create the OpenAI credentials Use the credentials for the HTTP Request node (as Predefined Credential type) Activate your workflow Start chatting For example, you can ask the AI Agent to generate a chart about the top 5 movies at the box office Start exploring the limits Shout-out Quickchart.io is an amazing open source project that provides a free API to test. Go check them out! Example of chart
by Mihai Farcas
This n8n workflow operates as a two-agent system where each agent has a specialized task. The process flows from initial user input to a final analysis, with a seamless handoff between the agents. How it works The Chat Trigger The entire process begins when you send a message using n8n's chat interface. This message serves as the initial prompt or query for the system. The Research Agent Takes Over The user's message is first sent to the Research Agent. This agent's job is to understand the query and gather relevant information. To do this, it has access to: LLM: Google Gemini, which acts as the agent's "brain" to process language and make decisions. Tools: web_search: It uses this tool (powered by your self-hosted SearXNG instance) to perform live searches on the internet. get_current_date: It can access the current date, which is useful for context-aware or time-sensitive research. The Research Agent uses these tools to find the most relevant information related to your query and then compiles it into a concise summary. Handoff to the Sentiment Analysis Agent Once the Research Agent has completed its task, it passes its findings directly to the Sentiment Analysis Agent. The Final Analysis The Sentiment Analysis Agent receives the text from the Research Agent. Its sole purpose, as defined by its system prompt, is to analyze the sentiment of the provided information. It determines if the content is positive, negative, or neutral and formulates a final response. This final analysis is then sent back to you in the chat, completing the workflow. Set up steps Select the Language Model (LLM): This workflow is pre-configured with Google Gemini. You can select a different model for the agents as needed. Configure LLM Credentials: Ensure that valid credentials for your chosen LLM are correctly set up within your n8n instance. Set Up the SearXNG Connection: Configure the node to connect to your self-hosted SearXNG instance. This enables the agent's web search capabilities. Define the Research Agent's Task: Customize the system prompt for the "Research Agent" to define its role, instructions, and how it should conduct its research. Define the Sentiment Analysis Agent's Task: Adjust the system prompt for the "Sentiment Analysis Agent" to specify how it should analyze the information provided by the Research Agent. Test the Workflow: Use the built-in chat interface in the n8n canvas to send a message and verify that the agents are functioning correctly.
by OneClick IT Consultancy P Limited
Automate Customer Feedback Analysis with Google Sheets, WhatsApp, and Email Introduction: Drowning in Data, Starving for Insight? Imagine this: Your team launches a new feature. Feedback starts pouring in emails, support tickets, social media mentions, and survey responses. You know gold is buried in there, but manually reading, tagging, and summarising hundreds, maybe thousands, of comments? It takes days, maybe weeks. By the time you have a clear picture, the moment might have passed. Sounds exhausting, right? What if you could have an AI assistant tirelessly working 24/7, instantly analysing every piece of feedback the moment it arrives? This isn't science fiction anymore. AI-powered automation can transform this slow, manual chore into a real-time insight engine, giving you the pulse of your customer base almost instantly. Let's explore how. What's the Goal? Understanding the Workflow Objective The core challenge is transforming raw, unstructured customer feedback into actionable intelligence quickly and efficiently. The Problem: Manual Overload: Sifting through vast amounts of feedback manually is incredibly time-consuming and prone to human error or bias. Delayed Insights: The lag between receiving feedback and understanding it means missed opportunities and slow responses to critical issues. Inconsistent Analysis: Different team members might interpret or categorize feedback differently, leading to unreliable trend spotting. The AI Solution: Automated Data Collection: Connects directly to feedback sources (surveys, social media, review sites, helpdesks). AI-Powered Analysis: Uses Large Language Models (LLMs) like GPT-4 or Claude to analyze sentiment, extract key topics, and summarize comments. Intelligent Categorization: Automatically tags feedback based on predefined or dynamically identified themes (e.g., "bug report," "feature request," "pricing issue"). Real-time Reporting: Pushes structured insights into dashboards, databases, or triggers notifications for immediate awareness. Outcome: You move from reactive problem-solving based on stale data to proactive, strategic decisions driven by a near real-time understanding of customer sentiment and needs. Why Does It Matter? Achieving 100X Productivity and Efficiency Look, automating feedback isn't just about saving time; it's about scaling your ability to listen and respond smarter, not harder. When you leverage AI, the gains aren't incremental - they're exponential. Here’s why this is a game changer: Blazing Speed: Analyse feedback 100x Faster (or more!) than manual methods. Insights appear in minutes or hours, not days or weeks. Unhuman Scalability: Process virtually unlimited volumes of feedback without needing to scale your human team proportionally. AI doesn't get tired or bored. Consistent Accuracy: AI applies analysis rules consistently, reducing human bias and ensuring reliable categorisation and sentiment scoring over time. Proactive Trend Spotting: Identify emerging issues or popular requests much earlier by analysing aggregated data automatically. Spot patterns humans might miss. Free Up Your Team: Let your talented team focus on acting on insights – improving products, fixing issues, engaging customers – instead of drowning in data entry. How It Works: AI Automation Step by Step Getting this set up is more straightforward than you might think, especially with tools like n8n acting as the central hub. Automated Feedback Triggering CRM/Website Event Node Trigger feedback requests after: Purchases (eCommerce) Support ticket resolution Feature usage (SaaS) Time-Based Node Schedule recurring NPS surveys Customer health check-ups Chat App Node (WhatsApp/Telegram/Messenger) Send conversational feedback prompts: "How was your recent experience with [specific interaction]?" Multi-Channel Feedback Collection Email Node (SendGrid/Mailchimp) Send personalized feedback requests Embed 1-5 rating widgets SMS Node (Twilio) Short mobile surveys: "Reply 1-5: How satisfied with your purchase?" Webhook Node Capture in-app feedback Process chatbot responses Social Media Node Monitor Twitter/X, Instagram mentions Analyze comments for unsolicited feedback AI-Powered Real-Time Analysis OpenAI/ChatGPT Node (Sentiment Analysis) Prompt: "Analyze sentiment (positive/neutral/negative) and key themes from: [customer feedback]" Output fields: Sentiment score (1-5) Urgency flag (high/medium/low) Key topics (billing, support, product, etc.) Translation Node (Optional) Convert multilingual feedback into a consistent language Instant AI Response System Conditional Node (Routing Logic) Positive feedback → Send thank-you + referral ask Neutral feedback → Follow-up question for details Negative feedback → Escalate to the human team AI Response Generator Node Prompt: "Create a personalized response to [feedback type] about [topic] with sentiment [score]" Adjust tone (professional/friendly/empathetic) Escalation Node Route critical issues to the support team with full context Automated Insights & Alerts Dashboard Node Real-time sentiment tracking Emerging issue detection Alert Node (Slack/Teams/Email) Notify teams of negative trends: "3+ complaints about checkout flow in the past hour!" Report Node Auto-generate weekly/monthly summaries: "Top 5 customer pain points this week" Product Board Integration Auto-create feature requests Prioritize based on feedback volume Tools of the Trade: AI & Automation Tech Stack You don't need a massive, complex tech stack. Focus on a few core, powerful tools: n8n: The workflow automation platform. This is the 'glue' that connects everything and orchestrates the process without needing deep coding knowledge. Honestly, it's incredibly versatile. OpenAI (GPT-4/GPT-4o): State-of-the-art LLM for high-quality text analysis, summarization, and classification. Great for complex understanding. Anthropic (Claude 3 Sonnet/Opus): Another top-tier LLM, known for strong performance in analysis and handling large contexts. Often, a great alternative or complement to GPT models. Feedback Sources APIs: Connectors for where your feedback lives (e.g., Typeform, SurveyMonkey, Twitter API, Zendesk API, Google Play/App Store review APIs). Data Storage/Destination: Where the processed insights go (e.g., Google Sheets, Airtable, Notion, PostgreSQL database, BigQuery). (Optional) Visualization Tool: Tools like Metabase, Grafana, Looker Studio, or Power BI to create dashboards from your structured feedback data. What's the Cost? Estimated Budget Let's talk investment. You're mainly looking at: Setup Costs: Primarily your time (or a consultant's) to design and build the initial workflow in n8n. Depending on complexity, this could range from a few hours to a few days. No major software licenses are usually needed upfront if using self-hosted n8n or starting with free/low-tier cloud plans. AI API Calls: You pay per usage to OpenAI/Anthropic. Costs depend heavily on volume but can start from $20-$50/month for moderate usage and scale up. Newer models are getting more cost-effective. n8n Hosting: Free if self-hosted (requires a server), or tiered cloud pricing starting around $20/month. Feedback Source APIs: Some platforms might have API access costs or rate limits on free tiers. Total Estimated Monthly Cost: For many businesses, ongoing costs can range from $50 - $500+ per month, highly dependent on feedback volume and AI model choice. The Return on Investment (ROI) is typically rapid. Consider the hours saved from manual analysis, the value of faster issue resolution, preventing churn, and the benefits of making product decisions based on real-time data. It often pays for itself very quickly. Who Benefits? Target Users and Industries This automated feedback loop isn't niche; it's valuable across many sectors and roles: Top Industries: SaaS (Software as a Service): Understanding user friction, feature requests, bug reports. E-commerce & Retail: Analyzing product reviews, post-purchase surveys, and support chats. Hospitality & Travel: Processing guest reviews, survey feedback. Mobile Apps: Monitoring app store reviews, in-app feedback. Financial Services: Gauging customer satisfaction with services, identifying pain points. Key Roles: Product Managers: Prioritizing features, understanding user needs, tracking launch reception. Customer Experience (CX) / Success Managers: Monitoring customer health, identifying churn risks, and improving support processes. Marketing Teams: Understanding brand perception, campaign feedback, and voice of the customer. Support Leads: Identifying recurring issues, measuring support quality, spotting training needs. This approach works for businesses of all sizes, from startups wanting to stay lean and agile to large enterprises needing to manage massive feedback volumes. How to use workflow? Importing a workflow in n8n is a straightforward process that allows you to use pre-built or shared workflows to save time. Below is a step-by-step guide to import a workflow in n8n, based on the official documentation and community resources. Steps to Import a Workflow in n8n 1. Obtain the Workflow JSON Source the Workflow:** Workflows are typically shared as JSON files or code snippets. You might receive them from: The n8n community (e.g., n8n.io workflows page). A colleague or tutorial (e.g., a .json file or copied JSON code). Exported from another n8n instance (see export instructions below if needed). Format:** Ensure you have the workflow in JSON format, either as a file (e.g., workflow.json) or as text copied to your clipboard. 2. Access the n8n Workflow Editor Log in to n8n:** Open your n8n instance (via n8n Cloud or your - self-hosted instance). Navigate to the Workflows tab in the n8n dashboard. Open a New Workflow:** Click Add Workflow to create a blank workflow, or open an existing workflow if you want to merge the imported workflow. 3. Import the Workflow Option 1: Import via JSON Code (Clipboard): In the n8n editor, click the three dots (⋯) in the top-right corner to open the menu. Select Import from Clipboard. Paste the JSON code of the workflow into the provided text box. Click Import to load the workflow into the editor. Option 2: Import via JSON File: In the n8n editor, click the three dots (⋯) in the top-right corner. Select Import from File. Choose the .json file from your computer. Click Open to import the workflow. Note: If the workflow includes nodes for apps requiring credentials (e.g., Google Sheets), you’ll need to configure those credentials separately after importing.
by David Olusola
This workflow analyzes images submitted via a form using OpenAI Vision, then delivers the analysis result directly to your Telegram chat. ✅ Use case examples: • Users submit screenshots for instant AI interpretation • Automated document or receipt analysis with Telegram delivery • Quick OCR or image classification workflows ⸻ ⚙️ Setup Guide Form Submission Trigger • Connect your form app (e.g. Typeform, Tally, or n8n’s own webhook form) to the On form submission trigger node. • Ensure it sends the image file or URL as input. OpenAI Vision Analysis • In the OpenAI node, select Analyze Image operation. • Provide your OpenAI API key and configure the prompt to instruct the model on what to analyze (e.g. “Describe this receipt in detail”). Set Telegram Chat ID • Use this manual node to input your Telegram Chat ID for delivery. • Alternatively, automate this with a database lookup or user session if building for multiple users. Telegram Delivery Node • Connect your Telegram Bot to n8n using your bot token. • Set up the sendMessage operation, using the analysis result from the previous node as the message text. Testing • Click Execute workflow. • Submit an image via your form and confirm it delivers to your Telegram as expected.
by Automate With Marc
🤖 AI Customer Support Agent with Google Docs Knowledge (Telegram + OpenAI) This no-code workflow turns your Telegram bot into an intelligent, always-on AI support agent that references your business documentation in Google Docs to respond to customer queries—instantly and accurately. Watch full step-by-step video tutorial of the build here: https://youtu.be/Mlv7CjGO7wI 🔧 How it works: Telegram Trigger – Captures incoming messages from users on your Telegram bot Langchain AI Agent (OpenAI GPT) – Interprets the message and uses RAG (retrieval-augmented generation) techniques to craft an answer Google Docs Tool – Connects to and retrieves context from your specified Google Doc (e.g. FAQ, SOPs, policies) Memory Buffer – Keeps track of recent chat history for more human-like conversations Telegram Reply Node – Sends the AI-generated response back to the user 💡 Use Cases: E-commerce customer service SaaS product onboarding Internal helpdesk bot for teams WhatsApp-style support for digital businesses 🧠 What makes this powerful: Supports complex questions by referencing a live Google Doc knowledge base Works in plain conversational language (no buttons or forms needed) Runs 24/7 with zero code Easily extendable to Slack, WhatsApp, or email support 🛠️ Tools used: Telegram Node (trigger + send) Langchain Agent with OpenAI GPT Google Docs Tool Memory Buffer Sticky Notes for easy understanding
by AlexAutomates
Auto-Categorize Outlook Emails with AI in n8n How It Works Trigger: The workflow starts with the Microsoft Outlook Trigger node, polling your inbox every minute for new emails. Extract & Clean Email Content: The email’s key fields (from, subject, isRead, body) are extracted. The body is converted from HTML to Markdown, then sanitized to plain text for reliable AI processing. Node Setup Details: Microsoft Outlook Trigger Resource: Message Operation: Trigger on new email Fields to Output: from, subject, isRead(optional), body Folders to Include: (Set to your Inbox or specific folder IDs) Markdown Node Input: {{$json"body"}} (HTML email body) Output Key: Email Body Markdown Purpose: Converts HTML to Markdown for easier downstream processing. Sanitize Node (Code Node) Input: Email Body Markdown from previous node Purpose: Cleans up Markdown, strips images, links, HTML tags, table formatting, and truncates to 4000 characters. Sample JS Code: // Get the markdown content from the previous node const markdownContent = $input.item.json["Email Body Markdown"]; Setup AI tools Move message and Get Folders Outlook tools are required, get contacts is optional. Set each field in the tools to "defined automatically by the model" and describe each field so the model understands how to use it. OpenRouter or other LLM models tool: You can use any client for this, but make sure to use a model that does well with tool calls (Claude, GPT-4.1, Gemini 2.5 Pro, etc.). Best Practices & Notes AI Prompt Engineering:** The AI is instructed to be conservative—never move emails from real people or saved contacts, and always explain its reasoning if it doesn’t move a message. This automation only works for NEW incoming messages. Inbox Zero:** This system is designed to help you achieve and maintain Inbox Zero by keeping only actionable items in your main inbox. Customization:** You can adjust the folder logic, add more categories, or tweak the AI prompt for your specific needs. Privacy:** All processing happens within your n8n instance; no email data is stored outside your environment except for the AI call (which only receives sanitized, minimal content).
by Mohan Gopal
Overview This release introduces a Voice-Enabled Tour Recommendation System that leverages n8n, ElevenLabs Voice Agent, OpenAI GPT-4o, and Pinecone Vector DB to deliver personalized travel itineraries based on spoken input. Users speak their preferences to the ElevenLabs voice agent, which then triggers an n8n workflow that returns a tailored tour plan. Features Voice interaction with AI-powered travel agent via ElevenLabs Uses ChatGPT-4o for contextual understanding and generation Dynamic query handling with vector-based search using Pinecone Fast response generation using n8n webhook Modular agent memory and role design for scalable enhancement Pre-requisites n8n account with workflow creation access ElevenLabs account with agent and webhook setup OpenAI API key (GPT-4o access) Pinecone account for vector database A list of vectorized tour packages using this n8n embedder (https://creators.n8n.io/workflows/5085) Setup Instructions Step 1: Configure the Voice Agent Webhook in ElevenLabs Use POST method Webhook URL: https://... Breakdown voice input into: Destination Type of tour Number of days Number of passengers Step 2: Set Up the AI Agent Prompt in ElevenLabs Use a conversational style with summaries, clarifying questions, and affirmations. Example Prompt: “You use a natural speech style and periodically summarize... Your goal is to help callers create a personalized tour plan.” Step 3: Select LLM LLM: GPT-4o Mini Memory window: Up to 5 contexts Step 4: Integrate Tools Use Custom Tool: n8n ID: tool_xxxxxx Tool Description: “Generates travel plan once the details are collected” Step 5: Build n8n Workflow Trigger: Webhook (POST) Process user input: Tour Recommendation AI Agent Use OpenAI Chat Model (GPT-4o) for reasoning Query Pinecone Vector Store using Tour Builder Q&A node Respond with structured Itinerary Plan via webhook response How to use: Execute the n8n workflow (the webhook waits for the voice trigger from elevenlabs) Start the Elevenlabs Voice Agent Request for a tour plan to any destination giving the details of your tour preferences. Wait for the Voice Agent to respond back with tour package suggestions after fetching the tour details from the n8n workflow. Close the conversation. | Area | Improvement | | ------------------ | ----------------------------------------------------- | | 🔉 Voice UX | Natural-sounding travel agent using ElevenLabs | | 💡 Personalization | ChatGPT-4o adapts based on travel style & preferences | | 📚 Knowledge Base | Pinecone-powered vector retrieval of real tour data | | 🔁 Reusability | Modular workflow with reusable embedding tools | | ⚙️ System Design | Separation of memory, logic, and data layers | Who is this for? Travel Agencies & DMCs Offer ultra-personalized packages based on customer queries. Let AI do the matching. Tour Package Aggregators Auto-curate and send matching packages from your catalog — no manual searching needed. Content & Marketing Teams Craft customized tour recommendations for email campaigns and newsletters. Tech-enabled Travel Startups Embed this intelligence in your workflows, CRMs, or chatbots to delight customers.
by Guillaume Duvernay
Unlock a new level of sophistication for your AI agents with this template. While the native n8n Think Tool is great for giving an agent an internal monologue, it's limited to one instance. This workflow provides a clever solution using a sub-workflow to create multiple, custom thinking tools, each with its own specific purpose. This template provides the foundation for building agents that can plan, act, and then reflect on their actions before proceeding. Instead of just reacting, your agent can now follow a structured, multi-step reasoning process that you design, leading to more reliable and powerful automations. Who is this for? AI and automation developers:** Anyone looking to build complex, multi-tool agents that require robust logic and planning capabilities. LangChain enthusiasts:** Users familiar with advanced agent concepts like ReAct (Reason-Act) will find this a practical way to implement similar frameworks in n8n. Problem solvers:** If your current agent struggles with complex tasks, giving it distinct steps for planning and reflection can dramatically improve its performance. What problem does this solve? Bypasses the single "Think Tool" limit:** The core of this template is a technique that allows you to add as many distinct thinking steps to your agent as you need. Enables complex reasoning:** You can design a structured thought process for your agent, such as "Plan the entire process," "Execute Step 1," and "Reflect on the result," making it behave more intelligently. Improves agent reliability and debugging:** By forcing the agent to write down its thoughts at different stages, you can easily see its line of reasoning, making it less prone to errors and much easier to debug when things go wrong. Provides a blueprint for sophisticated AI:** This is not just a simple tool; it's a foundational framework for building state-of-the-art AI agents that can handle more nuanced and multi-step tasks. How it works The re-usable "Thinking Space": The magic of this template is a simple sub-workflow that does nothing but receive text. This workflow acts as a reusable "scratchpad." Creating custom thinking tools: In the main workflow, we use the Tool (Workflow) node to call this "scratchpad" sub-workflow multiple times. We give each of these tools a unique name (e.g., Initial thoughts, Additional thoughts). The power of descriptions: The key is the description you give each of these tool nodes. This description tells the agent when and how it should use that specific thinking step. For example, the Initial thoughts tool is described as the place to create a plan at the start of a task. Orchestration via system prompt: The main AI Agent's system prompt acts as the conductor, instructing the agent on the overall process and telling it about its new thinking abilities (e.g., "Always start by using the Initial thoughts tool to make a plan..."). A practical example: This template includes two thinking tools to demonstrate a "Plan and Reflect" cycle, but you can add many more to fit your needs. Setup Add your own "action" tools: This template provides the thinking framework. To make it useful, you need to give the agent something to do. Add your own tools to the AI Agent, such as a web search tool, a database lookup, or an API call. Customize the thinking tools: Edit the description of the existing Initial thoughts and Additional thoughts tools. Make them relevant to the new action tools you've added. For example, "Plan which of the web search or database tools to use." Update the agent's brain: Modify the system prompt in the main AI Agent node. Tell it about the new action tools you've added and how it should use your customized thinking tools to complete its tasks. Connect your AI model: Select the OpenAI Chat Model node and add your credentials. Taking it further Create more granular thinking steps:** Add more thinking tools for different stages of a process, like a "Hypothesize a solution" tool, a "Verify assumptions" tool, or a "Final answer check" tool. Customize the thought process:* You can change *how the agent thinks by editing the prompt inside the fromAI('Thoughts', ...) field within each tool. You could ask for thoughts in a specific format, like bullet points or a JSON object. Change the workflow trigger:** Switch the chat trigger for a Telegram trigger, email, Slack, whatever you need for your use case! Integrate with memory:** For even more power, combine this framework with a long-term memory solution, allowing the agent to reflect on its thoughts from past conversations.
by Mathis
Convert PDF documents to AI-generated podcasts with Google Gemini and Text-to-Speech Transform any PDF document into an engaging, natural-sounding podcast using Google's Gemini AI and advanced Text-to-Speech technology. This automated workflow extracts text content, generates conversational scripts, and produces high-quality audio files. Who is this for? This workflow template is perfect for content creators, educators, researchers, and marketing professionals who want to repurpose written content into audio format. Ideal for creating podcast episodes, educational content, or making documents more accessible. What problem does this solve? Converting written documents to engaging audio content manually is time-consuming and requires scriptwriting skills. This workflow automates the entire process, turning static PDFs into dynamic, conversational podcasts that sound natural and engaging. What this workflow does Extracts text from uploaded PDF documents Generates podcast script using Google Gemini AI with conversational tone Converts script to speech using Google's advanced TTS with customizable voices Processes audio into properly formatted WAV files Saves final podcast ready for distribution Setup Obtain API credentials: Get Google Gemini API key from AI Studio Configure credentials in n8n as "Google Gemini(PaLM) Api account" Configure voice settings: Choose from available voices: Kore (professional), Aoede (conversational), Laomedeia (energetic) Customize script generation prompts if needed Test the workflow: Upload a sample PDF file Verify audio output quality Adjust voice settings as preferred How to customize this workflow Modify script style:** Edit the prompt in the "Generate Podcast Script" node to change tone, length, or format Change voice:** Update the voice name in "Prepare TTS Request" node Add preprocessing:** Insert text cleaning nodes before script generation Integrate with storage:** Connect to Google Drive, Dropbox, or other storage services Add notifications:** Include Slack or email notifications when podcasts are ready Note: This template requires Google Gemini API access and works best with text-based PDF files under 10MB.
by Shahrear
This workflow contains community nodes that are only compatible with the self-hosted version of n8n. Automatically transform audio files into professional transcription reports with AI-powered speech recognition, timestamp generation, and formatted Google Docs output. What this workflow does Monitors Gmail for incoming audio attachments Downloads and processes audio files using VLM Run AI transcription Generates accurate transcriptions with precise timestamps and segmentation Creates professional reports in Google Docs with formatted output Handles asynchronous processing for long audio files without timeouts Setup Prerequisites: Gmail account, VLM Run API credentials, Google Docs access, self-hosted n8n. You need to install VLM Run community node Quick Setup: Configure Gmail OAuth2 for email monitoring Add VLM Run API credentials for audio transcription Set up Google Docs OAuth2 for report generation Create target Google Doc for transcription reports Update document URL in workflow nodes Test with sample audio file and activate Perfect for Meeting recordings and conference calls Voice memos and dictation workflows Interview transcriptions and journalism Podcast episode documentation Accessibility compliance and documentation Legal proceedings and court recordings Educational content and lecture notes Customer service call analysis Key Benefits Human-level accuracy** - Advanced AI speech recognition with automatic punctuation Timestamp precision** - Segmented transcriptions with exact time markers Multi-format support** - Handles MP3, WAV, M4A, AAC, OGG, FLAC files Asynchronous processing** - No timeouts for long audio files Professional formatting** - Beautifully structured Google Docs reports Automatic workflow** - Zero manual intervention required Saves hours per recording** - Transforms manual transcription into instant results Searchable documentation** - Google Docs integration enables easy content discovery How to customize Extend by adding: Speaker identification and diarization Integration with project management tools (Notion, Asana, Trello) Automatic summary generation from transcripts Translation to multiple languages Slack notifications for completed transcriptions Integration with CRM systems for call logging Audio quality enhancement preprocessing Custom formatting templates for different use cases Automatic keyword extraction and tagging Integration with calendar systems for meeting context This workflow revolutionizes audio documentation by combining cutting-edge AI transcription with professional report generation, making spoken content instantly accessible, searchable, and shareable across your organization.
by James Francis
Overview In cold email campaigns, the lead's company name is the 2nd most frequently inserted variable after their first name. They're critical for effective cold email personalization. However, company names are often messy and can contain taglines, legal suffixes (e.g. LLC, Inc.), and other variations that would never be written out by a human in an email. If your email starts with "I came across Techwave Solutions LLC on LinkedIn...", it's a dead giveaway that you're sending a tempalted email and a response is much less likely. This simple workflow uses AI to clean up messy company names in a Google Sheet so that your cold email campaigns can achieve better results. How It Works A form is submitted with a Google Sheet url The workflow grabs the leads and uses an LLM node to clean the company names The updated leads are saved back in a new sheet within the original spreadsheet Setup Steps Add your Google Sheets and OpenAI (or your AI model provider of choice) credentials to n8n Create a Google Sheet with your list of leads. IMPORTANT: the sheet MUST have a column called "Company" (Optional). The AI workflow has a highly optimized system prompt. However, you may achieve better results by updating the list of examples in the prompt with companies (real or fake) in the industry you're targeting. If you have any questions or feedback about this workflow, or would like me to build custom workflows for your business, email me at n8n@paperjam.agency.
by Davi Saranszky Mesquita
Use case Workshop We are using this workflow in our workshops to teach how to use Tools a.k.a functions with artificial intelligence. In this specific case, we will use a generic "AI Agent" node to illustrate that it could use other models from different data providers. Enhanced Weather Forecasting In this small example, it's easy to demonstrate how to obtain weather forecast results from the Open-Meteo site to accurately display the upcoming days. This can be used to plan travel decisions, for example. What this workflow does We will make an HTTP request to find out the geographic coordinates of a city. Then, we will make other HTTP requests to discover the weather for the upcoming days. In this workshop, we demonstrate that the AI will be able to determine which tool to call first—it will first call the geolocation tool and then the weather forecast tool. All of this within a single client conversation call. Setup Insert an OpenAI Key and activate the workflow. by Davi Saranszky Mesquita https://www.linkedin.com/in/mesquitadavi/