by Tomek
How it works Use Telegram to send in new phrases (flashcard front) You can also manually input phrase in the workflow itself ChatGPT generates provided phrase description (in English but you can change it) including multiple meanings & generates examples of using the phrase in a sample sentence (flashcard back) Steps to setup Provide your Telegram bot API key (optional) Provide your OpenAI key Provide Google Sheets credentials How to import flashcards from Google Sheets into Anki Use Google Sheets to Anki add-on: 1871608121 In Anki simply click Sync Decks and you're done :) Enjoy
by Airtop
Extracting Comments from an X Post Use Case Engaging with conversations on X (formerly Twitter) is critical for brands and individuals monitoring sentiment, leads, or emerging trends. Manually collecting comments is time-consuming—this automation enables scalable extraction of comment data to inform your outreach or analysis. What This Automation Does This automation extracts comments from a specified X post, with the following input parameters: airtop_profile**: The name of your Airtop Profile connected to X. x_post_url**: The URL of the X post to extract comments from. max_number_of_comments**: The maximum number of comments to retrieve. How It Works Takes input via a form or another workflow. Normalizes the input values. Creates a new browser session using Airtop. Navigates to the provided X post. Uses a prompt to extract up to the specified number of comments, returning: Author name Author profile URL Comment text Setup Requirements Airtop API Key — free to generate. An Airtop Profile connected to X (requires one-time login). Next Steps Pair with X Monitoring**: Use this with the X monitoring automation to detect relevant posts and extract discussion context automatically. Feed into Analytics**: Combine with summarization or sentiment analysis tools to understand audience response at scale. Export for CRM/BI**: Pipe the structured comment data into your CRM or business intelligence stack for lead tracking or reporting. Read more about Extracting Comments from X Posts
by Jesse Davids
Workflow Documentation Description: This workflow is designed to optimize prompts by enhancing user inputs for clarity and specificity using AI. The workflow takes a user-provided prompt as input and uses a Natural Language Processing (NLP) model to refine and improve the prompt. The optimized prompt is then sent back to the user, ready for use in further workflows or processes. Setup: This workflow is suitable for users who want to improve their prompts for better communication and understanding in their workflows. The workflow utilizes an AI Agent powered by an OpenAI Chat Model to enhance user prompts. Expected Outcomes: Users can provide vague or imprecise prompts as input to the workflow. The AI Agent will refine and optimize the prompt, adding clarity and specific details. The optimized prompt will be delivered back to the user via Telegram or can be input for the next nodes. Extra Information: A. A Telegram node is used to deliver the optimized prompt back to the user. B. Ensure you have the necessary credentials set up for Telegram and OpenAI accounts. C. Customize the workflow's settings, such as the AI model used for prompt optimization, to suit your requirements. D. Activate the workflow once all configurations are set to start optimizing prompts efficiently.
by nepomuc
This flow migrates all repositories of a Gitlab group to a Gitea organization by triggering Gitea's integrated migration tool. Set up steps: Copy this workflow Create an empty Gitea-organization you want to migrate to. (The flow will skip all projects which have the same name of possibly already existing repos in the target Gitea organization.) Create an access token in your Gitea (https://gitea.example.com/user/settings/applications), set it up as a Header Auth with it's name being "Authorization" and value being "token [your-gitea-token]" and select it for the "Gitea:"-named nodes. Create a Personal access token in Gitlab (https://gitlab.com/-/user_settings/personal_access_tokens), create a Header Auth with name "PRIVATE-TOKEN" and value "[your-gitlab-token]" and select it for the "Gitlab:"-named node. Also keep the value of your Gitlab-token available for step 5. Edit the Set node right after the trigger node and set paste your personal access token in there as well as the names of the Gitlab source group and the Gitea target organization. Use the url-friendly version of their names by simply copy&pasting them from their URLs. Run the flow and enjoy the show :)
by Yulia
Create a Telegram bot that combines advanced AI functionalities with LangChain nodes and new tools. Nodes as tools and the HTTP request tool are a new n8n feature that extend custom workflow tool and simplify your setup. We used the workflow tool in the previous Telegram template to call the Dalle-3 model. In the new version, we've achieved similar results using the HTTP Request tool and the Telegram node tool instead. The main difference is that Telegram bot becomes more flexible. The LangChain Agent node can decide which tool to use and when. In the previous version, all steps inside the custom workflow tool were executed sequentially. ⚠️ Note that you'd need to select the Tools Agent to work with new tools. Before launching the template, make sure to set up your OpenAI and Telegram credentials. Here’s how the new Telegram bot works: Telegram Trigger listens for new messages in a specified Telegram chat. This node activates the rest of the workflow after receiving a message. AI Tool Agent receives input text, processes it using the OpenAI model and replies to a user. It addresses users by name and sends image links when an image is requested. The OpenAI GPT-4o model generates context-aware responses. You can configure the model parameters or swap this node entirely. Window buffer memory helps maintain context across conversations. It stores the last 10 interactions and ensures that the agent can access previous messages within a session. Conversations from different users are stored in different buffers. The HTTP request tool connects with OpenAI's DALL-E-3 API to generate images based on user prompts. The tool is called when the user asks for an image. Telegram node tool sends generated images back to the user in a Telegram chat. It retrieves the image from the URL returned by the DALL-E-3 model. This does not happen directly, however. The response from the HTTP request tool is first stored in the Agent’s scratchpad (think of it as a short-term memory). In the next iteration, the Agent sends the updated response to the GPT model once again. The GPT model will then create a new tool request to send the image back to the user. To pass the image URL, the tool uses the new $fromAI() expression. Send final reply node sends the final response message created by the agent back to the user on Telegram. Even though the image was already passed to the user, the Agent always stops with the final response that comes from dedicated output. ⚠️ Note, that the Agent may not adhere to the same sequence of actions in 100% of situations. For example, sometimes it could skip sending the file via the Telegram node tool and instead just send an URL in the final reply. If you have a longer series of predefined steps, it may be better to use the “old” custom workflow tool. This template is perfect as a starting point for building AI agentic workflow. Take a look at another agentic Telegram AI template that can handle both text and voice messages.
by joseph
🧵 Generate Conversational Twitter/X Threads with GPT-4o AI (n8n Workflow) This workflow uses OpenAI (GPT-4o) and Twitter/X to automatically generate and publish engaging, conversational threads in response to a trigger (e.g., from a chatbot or form). 🚀 What Does It Do? Listens for an incoming message (e.g., via webhook or another n8n input). Uses GPT-4o to craft a narrative-style Twitter thread in a personal, friendly tone. Publishes the first tweet, then automatically posts each following tweet as a reply—building a full thread. 🛠️ What Do You Need to Configure? Before using this template, make sure to set up the following credentials: OpenAI Add your OpenAI API key in the OpenAI Chat Model node. This is used to generate the thread content. Twitter/X Add your Twitter OAuth2 credentials to the First Tweet and Thread Reply nodes. This allows the workflow to publish tweets on your behalf. ✨ Who Is This For? This template is perfect for: Content creators who want to share ideas regularly Personal brands looking to grow their presence Social media managers automating thread creation 🔧 How to Customize It You can easily adjust the tone, structure, or length of the threads by modifying the system prompt in the OpenAI node. For example: To create threads with humor, change the prompt to “Write in a witty and humorous tone.” To tailor it for marketing, prompt it with “Write a persuasive product-focused Twitter thread.” You can also integrate this workflow with: Telegram bots Web forms (e.g., Typeform, Tally) CRM tools or newsletter platforms 📋 Sample Output Prompt sent to the workflow: “Tips for growing on Twitter in 2025” Generated thread: ++Tweet 1:++ Thinking of growing your presence on Twitter/X in 2024? Here's a thread with the most effective strategies that actually work 🧵 ++Reply 1:++ Engage, don’t broadcast Twitter is a conversation platform. Reply to others, quote-tweet, and start discussions instead of just posting links. ++Reply 2:++ Consistency beats virality Tweeting regularly builds trust and visibility. You don't need to go viral — just show up.
by AiAgent
Disclaimer This workflow contains a community node. What It Does Leverage the power of GPT-4o to seamlessly summarize a scientific research PDF of your choosing. By simply downloading a PDF of a scientific research article into a folder on your computer this powerful workflow will automatically read the article and produce a detailed summarization of the article. The workflow will then save this summarization onto your computer for future convenience. Who Is This For? The workflow is the perfect tool for all types of self-learners attempting to improve their knowledge base as efficiently as possible. It is a way to rapidly improve your knowledge base using peer reviewed scientific articles in a quick and efficient way. This workflow will provide a more detailed summary of the scientific research article than a typical abstract, while taking a fraction of the time it would take to read an entire paper. It will provide you with enough information to have a firm grasp on the information provided within the scientific article and will allow you to determine if you would like to dive deeper into the article. This workflow is perfect for professionals who need to stay current on the most recent literature in their field, as well as the self-learners who enjoy diving deep into a specific topic. It can aid anyone who is performing academic research, a literature review, or attempting to increase their knowledge base in a field using peer reviewed sources. How It Works Utilizing the power of GPT-4o, the moment you save a PDF of a scientific research article to a predesignated folder it will being to read the article and produce a summary that will be saved into another designated folder on your computer via the following steps below. Search the internet and your favorite journal databases for a scientific article that interests you. With the n8n workflow activated, download a PDF of the scientific article and save it to a specific designated folder. Saving the scientific article to this folder will trigger the workflow to initiate. The workflow will then extract the contents of the PDF and pass the data along to an AI agent utilizing the power of GPT-4o. This AI agent will produce a detailed summary of the scientific article. This summary will include the following: Introduction heading discussing the importance of the article and the specific aims of the study Methods heading detailing how the study was conducted, what variables they evaluated, what their inclusion and exclusion criteria were, and what their measurement standards were. Results heading providing specific data provided in the study for all variables tested as well as the statistical significance of each result. Summary heading evaluating the importance of the results, how it compares to other scientific articles in the same field, as well as the recommendations of the authors on how to interpret the data provided by the results. Conclusion heading summarizing the strengths and weaknesses of the scientific article as well as providing deficiencies in knowledge on the subject that would be a good topic for future studies. After the AI agent has completed its summary, it will convert the summary to text and save it to a designated folder on your computer for future viewing. Set Up Steps You will need to create a folder on your computer where you would like to save your scientific article PDFs. You will then copy the pathway to this folder into the local file trigger node. You will need to obtain an Open AI API key from platform.openai.com/api-keys After you obtain this Open AI API key you will need to connect it to the Open AI Chat Model connected to the Summarizer Tools Agent. You will now need to fund your Open AI account. GPT-4o costs ~$0.01 to run the workflow. Finally, create a folder on your computer you wish to have the summarizations saved to. Copy the pathway to this folder into the Save to Folder node. Customization This workflow is easy to customize to a specific area of research to provide the best possible summarization. If you have a specific expertise in a field of study, you can customize the output to provide data at a higher level of understanding for that field. For example, if you are a marine biologist, you can change the portion of the text prompt in the summarizer tool from "You are a research expert who is providing data to another researcher." to "You are a marine biologist expert who is providing data to another marine biologist." Disclaimer If the pdf is too large, open AI will not be able to summarize it and will provide the error that you have reached your limit of requests.
by Agent Circle
This workflow demonstrates how to automate live information gathering, fact-checking, and trend analysis in response to any chat message - using a powerful AI agent, memory, and a real-time search tool. Use cases are many: This is perfect for researchers needing instant, up-to-date data; support teams providing live, accurate answers; content creators looking to verify facts or find hot topics; and analysts automating regular reports with the freshest information. How It Works The workflow is triggered whenever a chat message is received (e.g., a user question, research prompt, or data request). The message is sent to the AI Agent, which follows the following steps: First, it queries SerpAPI – Research to gather the latest real-time information and data from the web. Next, it checks the Window Buffer Memory for any related past interactions or contextual information that may be useful. Finally, it sends all collected data and context to the Google Gemini Chat Model, which analyzes the information and generates a comprehensive, intelligent response. Then, the AI Agent delivers the analyzed, up-to-date answer directly in the chat, combining live data, context, and expert analysis. How To Set Up Download and import the workflow into your n8n workspace. Set up API credentials and tool access for the AI Agent: Google Gemini (for chat-based intelligence) → connected to Node Google Gemini Chat Model. SerpAPI (for real-time web and search results) → connected to Node SerpAPI - Research. Window Buffer Memory (for richer, context-aware conversations) → connected to Node Window Buffer Memory. Open the chat in n8n and type the topic or trend you want to research. Send the message and wait for the process to complete. Receive the AI-powered research reply in the chat box. Requirements An n8n instance (self-hosted or cloud). SerpAPI** credentials for live web search and data gathering. Window Buffer Memory** configured to provide relevant conversation context in history. Google Gemini API** access to analyze collected data and generate responses. How To Customize Choose your preferred AI model: Replace **Google Gemini with OpenAI ChatGPT, or any other chat model as preferred. Add or change memory: Replace **Window Buffer Memory with more advanced memory options for deeper recall. Connect your preferred chat platform**: Easily swap out the default chat integration for Telegram, Slack, or any other compatible messaging platform to trigger and interact with the workflow. Need Help? If you’d like this workflow customized, or if you’re looking to build a tailored AI Agent for your own business - please feel free to reach out to Agent Circle. We’re always here to support and help you to bring automation ideas to life. Join our community on different platforms for assistance, inspiration and tips from others. Website: https://www.agentcircle.ai/ Etsy: https://www.etsy.com/shop/AgentCircle Gumroad: http://agentcircle.gumroad.com/ Discord Global: https://discord.gg/d8SkCzKwnP FB Page Global: https://www.facebook.com/agentcircle/ FB Group Global: https://www.facebook.com/groups/aiagentcircle/ X: https://x.com/agent_circle YouTube: https://www.youtube.com/@agentcircle LinkedIn: https://www.linkedin.com/company/agentcircle
by David Roberts
Overview This workflow takes some French text, and translates it into spoken audio. It then transcribes that audio back into text, translates it into English and generates an audio file of the English text. To do so, it uses ElevenLabs (which has a free tier) and OpenAI. Setup These steps should only take a few minutes: In ElevenLabs, add a voice to your voice lab and copy its ID. Add it to the 'Set voice ID' node Get your ElevenLabs API key (click your name in the bottom-left of ElevenLabs and choose ‘profile’) In the 'Generate French audio' node, create a new header auth cred. Set the name to xi-api-key and the value to your API key In the 'credential' field of the 'Transcribe audio' node, create a new OpenAI cred with your OpenAI API key Run the workflow by clicking the orange button at the bottom of the canvas
by Derek Cheung
Use case This workflow enables a Telegram bot that can: Accept speech input in one of 55 supported languages Automatically detect the language spoken and translate the speech to another language Responds back with the translated speech output. This allows users to communicate across language barriers by simply speaking to the bot, which will handle the translation seamlessly. How does it work? Translation In the translation step the workflow converts the user's speech input to text and detects the language of the input text. If it's English, it will translate to French. If it's French, it will translate to English. To change the default translation languages, you can update the prompt in the AI node. Output In the output step, we provide the translated text output back to the user and speech output is generated in the translated language. Setup steps Obtain Telegram API Token Start a chat with the BotFather. Enter /newbot and reply with your new bot's display name and username. Copy the bot token and use it in the Telegram node credentials in n8n. Update the Settings node to customize the desired languages Activate the flow Full list of supported languages All supported languages:
by Jimleuk
This n8n template demonstrates an approach to image embeddings for purpose of building a quick image contextual search. Use-cases could for a personal photo library, product recommendations or searching through video footage. How it works A photo is imported into the workflow via Google Drive. The photo is processed by the edit image node to extract colour information. This information forms part of our semantic metadata used to identify the image. The photo is also processed by a vision-capable model which analyses the image and returns a short description with semantic keywords. Both pieces of information about the image are combined with the metadata of the image to form a document describing the image. This document is then inserted into our vector store as a text embedding which is associated with our image. From here, the user can query the vector store as they would any document and the relevant image references and/or links should be returned. Requirements Google account to download image files from Google Drive. OpenAI account for the Vision-capable AI and Embedding models. Customise this workflow Text summarisation is just one of many techniques to generate image embeddings. If the results are unsatisfactory, there are dedicated image embedding models such as Google's vertex AI multimodal embeddings.
by Jimleuk
This n8n workflow is a fun way to query and search over your credentials on your n8n instance. Good to know Your credentials should remain safe as this workflow does not decrypt or use any decrypted data. Example Usage "Which workflows are using Slack and Google Calendar?" "Which workflows have AI in their name but are not using openAI?" How it works Using the n8n API, it fetches all workflow data on the instance. Workflow data contains references to credentials used so this will be extracted. With some necessary reformatting, the workflows and their credentials metadata are stored to a SQLite database. Next, an AI agent is used with a custom SQL tool that reads the SQLite database created in the previous step. The AI agent is instructed to perform SQL queries against our workflow credential table when asked about credentials by the user. Requirements You'll need an n8n API key. Please note that only workflows will be scoped to your API key. Customising the workflow Add extra table fields to the SQLite database to answer even more complex queries such as: workflow status to differentiate between active and inactive workflows.