by Nathan Lee
How it works Automates the retrieval of Calvin and Hobbes daily comics. Extracts the comic image URL from the website. Translates comic dialogues to English and Korean. Posts the comic and translations to Discord daily. Set up steps Estimated setup time: ~10-15 minutes. Use a Schedule Trigger to automate the workflow at 9 AM daily. Add nodes for parameter setup, HTTP request, data extraction, and integration with Discord. Add detailed notes to each node in the workflow for easy understanding.
by Leonardo Grigorio
Youtube Video This n8n workflow is designed to assist YouTube content creators in identifying trending topics within a specific niche. By leveraging YouTube's search and data APIs, it gathers and analyzes video performance metrics from the past two days to provide insights into what content is gaining traction. Here's how the workflow operates: Trigger Setup: The workflow begins when a user sends a query through the chat_message_received node. If no niche is provided, the AI prompts the user to select or input one. AI Agent (Language Model): The central node utilizes a GPT-based AI agent to: Understand the user's niche or content preferences. Generate tailored search terms related to the niche. Process YouTube API responses and summarize trends using insights such as common themes, tags, and audience engagement metrics (views, likes, and comments). YouTube Search: The youtube_search node runs a secondary workflow to query YouTube for relevant videos published within the last two days. It retrieves basic video data such as video IDs, relevance scores, and publication dates. Video Details Retrieval: The workflow fetches additional details for each video: Video Snippet: Metadata like title, description, and tags. Video Statistics: Metrics such as views, likes, and comments. Content Details: Video duration, ensuring only content longer than 3 minutes and 30 seconds is analyzed. Data Processing: Video metadata is cleaned, sanitized, and stored in memory. Tags, titles, and descriptions are analyzed to identify patterns and trends across multiple videos. Output: The workflow compiles insights and presents them to the user, highlighting: The most common themes or patterns within the niche. URLs to trending videos and their respective channels. Engagement statistics, helping the user understand the popularity of the content. Key Notes for Setup: API Keys**: Ensure valid YouTube API credentials are configured in the get_videos, find_video_snippet, find_video_statistics, and find_video_data nodes. Memory Buffer**: The window_buffer_memory node ensures the AI agent retains context during analysis, enhancing the quality of the generated insights. Search Term Customization**: The AI agent dynamically creates search terms based on the user’s niche to improve search precision. Use Case: This workflow is ideal for YouTubers or marketers seeking data-driven inspiration for creating content that aligns with current trends, maximizing the potential to engage their audience. Example Output: For the niche "digital marketing": Trending Topic: Videos about "mental triggers" and "psychological marketing." Tags: "SEO," "Conversion Rates," "Social Proof." Engagement: Videos with over 200K views and high likes/comment ratios are leading trends. Video links: https://www.youtube.com/watch?v=video_id1 https://www.youtube.com/watch?v=video_id2
by Floyd Mahou
How it works • Allows users to manage their Google Calendar via WhatsApp using natural language • Handles event creation, updates, deletions, availability checks, and agenda overviews • AI agent interprets the user’s message and triggers the appropriate calendar action • Responses are sent back to the user via WhatsApp, with confirmation or schedule info Set up steps • Set up a WhatsApp Business Cloud account and configure your webhook • Connect your Google Calendar using n8n credentials • Deploy OpenAI API key for natural language understanding • Link each calendar action (create, update, delete, search) to the TimePilot agent • Customize confirmation messages and automate reply formatting Note: More detailed configuration and custom logic are described inside sticky notes within the workflow.
by David Olusola
🤖 AI-Powered Lead Enrichment with Explorium MCP & Telegram Who it's for Sales reps, agencies, and growth teams who want to turn basic company info into qualified leads with automated research . Perfect for B2B prospecting. What it does This workflow lets you send a company name or domain via Telegram, and instantly returns: ✅ Enriched company profile (industry, size, tech, pain points) ✅ A clean, structured JSON — ready for your CRM or sales tools How it works 💬 Send company info to your Telegram bot 🔎 Workflow pulls data from Explorium MCP + Tavily 🧠 AI analyzes model, tools, pain points & goals 📤 JSON response sent back via Telegram or logged to your database Requirements 🔐 OpenAI API (GPT-4) 🧠 Explorium MCP API 🌐 Tavily Web Search API 🤖 Telegram Bot API 🗃️ PostgreSQL (for memory/logging) How to set up Add API keys in n8n Connect Telegram bot to webhook Set up PostgreSQL for memory persistence Customize prompts (tone, niche, etc.) Test by sending a company name via Telegram Customization Options 🎯 Focus enrichment on specific industries or keywords 💬 Adjust the email sequence structure & style 🧩 Add extra data sources (e.g. Clearbit, Crunchbase) 🧾 Format JSON to match your CRM schema ⚙️ Add approval step before sending emails Highlights ✅ Uses multi-source enrichment ✅ Works 100% from Telegram ✅ Integrates into any sales pipeline
by Jimleuk
This n8n workflow demonstrates how to create a really simple yet effective customer support channel and pipeline by combining Slack, Linear and AI tools. Built on n8n's ability to integrate anything, this workflow is intended for small support teams who want to maximise re-use of the tools they already have with an interface which is doesn't require any onboarding. Read the blog post here: https://blog.n8n.io/automated-customer-support-tickets-with-n8n-slack-linear-and-ai/ How it works The workflow is connected to a slack channel setup with the customer to capture support issues. Only messages which are tagged with a "✅" reaction are captured by the workflow. Messages are tagged by the support team in the channel. Each captured support issue is sent to the AI model to classify, prioritise and rewrite into a support ticket. The generated support ticket is uploaded to Linear for the support team to investigate and track. Support team is able to report back to the user via the channel when issue is fixed. Requirements Slack channel to be monitored Linear account and project Customising this workflow Don't have Linear? This workflow can work just as well with traditional ticketing systems like JIRA.
by Sidetool
Hello there! This is a supporting workflow for an Airtable Base that handles Recurring Tasks. The objective of the workflow is to handle creating tasks on a recurring basis depending on the Airtable Setup You can access that Airtable Template here for complete context- Airtable Universe The functionality of the workflow can be easliy adapted to any data source. Feel free to contact us with any doubts or questions at http://sidetool.co Use this as is, or adapted to your existing Airtable Base – embrace automated simplicity! 🚀🌟
by Bela
In this automation we first make a screenshot with a screenshot API called URLbox and then send this screenshot into the OpenAI API and analyze it. You can extend this automation by the way you want to ingest the website url's & names into this workflow. Options as data source: Postgres Google Sheets Your CRM ... Setup: Replace Website & URL in Setup Node Put in your URLbox API Key Put in your OpenAI credentials Click here for a blog article with more information on the automation.
by Niklas Hatje
Use case When working with multiple teams, bugs must get in front of the right team as quickly as possible to be resolved. Normally this includes a manual grooming of new bugs that have arrived in your ticketing system (in our case Linear). We found this way too time-consuming. That's why we built this workflow. What this workflow does This workflow triggers every time a Linear issue is created or updated within a certain team. For us at n8n, we created one general team called Engineering where all bugs get added in the beginning. The workflow then checks if the issue meets the criteria to be auto-moved to a certain team. In our case, that means that the description is filled, that it has the bug label, and that it's in the Triage state. The workflow then classifies the bug using OpenAI's GPT-4 model before updating the team property of the Linear issue. If the AI fails to classify a team, the workflow sends an alert to Slack. Setup Add your Linear and OpenAi credentials Change the team in the Linear Trigger to match your needs Customize your teams and their areas of responsibility in the Set me up node. Please use the format Teamname. Also, make sure that the team names match the names in Linear exactly. Change the Slack channel in the Set me up node to your Slack channel of choice. How to adjust it to your needs Play around with the context that you're giving to OpenAI, to make sure the model has enough knowledge about your teams and their areas of responsibility Adjust the handling of AI failures to your needs How to enhance this workflow At n8n we use this workflow in combination with some others. E.g. we have the following things on top: We're using an automation that enables everyone to add new bugs easily with the right data via a /bug command in Slack (check out this template if that's interesting to you) This workflow was built using n8n version 1.30.0
by Deborah
How it works This workflow shows how to set credentials dynamically using expressions. It accepts an API key via a form, then uses it in the NASA node to authenticate a request. Setup steps First, set up your NASA credential: Create a new NASA credential. Hover over API Key. Toggle Expression on. In the API Key field, enter {{ $json["Enter your NASA API key"] }}. Then, test the workflow: Get an API key from NASA Select Test workflow Enter your key using the form. The workflow runs and sends you to the NASA picture of the day. For more information on expressions, refer to n8n documentation | Expressions.
by Jimleuk
This n8n workflow demonstrates how to automate oftern time-consuming form filling tasks in the early stages of the tendering process; the Request for Proposal document or "RFP". It does this by utilising a company's knowledgebase to generating question-and-answer pairs using Large Language Models. How it works A buyer's RFP is submitted to the workflow as a digital document that can be parsed. Our first AI agent scans and extracts all questions from the document into list form. The supplier sets up an OpenAI assistant prior loaded with company brand, marketing and technical documents. The workflow loops through each of the buyer's questions and poses these to the OpenAI assistant. The assistant's answers are captured until all questions are satisified and are then exported into a new document for review. A sales team member is then able to use this document to respond quickly to the RFP before their competitors. Example Webhook Request curl --location 'https://<n8n_webhook_url>' \ --form 'id="RFP001"' \ --form 'title="BlueChip Travel and StarBus Web Services"' \ --form 'reply_to="jim@example.com"' \ --form 'data=@"k9pnbALxX/RFP Questionnaire.pdf"' Requirements An OpenAI account to use AI services. Customising the workflow OpenAI assistants is only one approach to hosting a company knowledgebase for AI to use. Exploring different solutions such as building your own RAG-powered database can sometimes yield better results in terms of control of how the data is managed and cost.
by Jimleuk
This n8n workflow demonstrates a simple approach to improve chat UX by staggering an AI Agent's reply for users who send in a sequence of partial messages and in short bursts. How it works Twilio webhook receives user's messages which are recorded in a message stack powered by Redis. The execution is immediately paused for 5 seconds and then another check is done against the message stack for the latest message. The purpose of this check lets use know if the user is sending more messages or if they are waiting for a reply. The execution is aborted if the latest message on the stack differs from the incoming message and continues if they are the same. For the latter, the agent receives the buffered messages up to that point and is able to respond to them in a single reply. Requirements A Twilio account and SMS-enabled phone number to receive messages. Redis instance for the messages stack. OpenAI account for the language model. Customising the workflow This workflow should work for other common messaging platforms such as Whatsapp and Telegram. 5 seconds too long or too short? Adjust the wait threshold to suit your customers.
by simonscrapes
What this workflow does: This flow uses an AI node to generate Seed Keywords to focus SEO efforts on based on your ideal customer profile. You can use these keywords to form part of your SEO strategy. Outputs: List of 20 Seed Keywords Setup Fill the Set Ideal Customer Profile (ICP) Connect with your credentials Replace the Connect to your own database with your own database Pre-requisites / Dependencies You know your ideal customer profile (ICP) An AI API account (either OpenAI or Anthropic recommended) More templates and n8n workflows >>> @simonscrapes