by Fan Luo
Daily Company News Bot This n8n template demonstrates how to use Free FinnHub API to retrieve the company news from a list stock tickers and post messages in Slack channel with a pre-scheduled time. How it works We firstly define the list of stock tickers you are interested Loop over items to call FinnHub API to get the latest company news for the ticker Then we format the company news as a markdown text content which could be sent to Slack Post a new message in Slack channel Wait for 5 seconds, then move to the next ticker How to use Simply setup a scheduler trigger to automatically trigger the workflow Requirements FinnHub API Key Slack channel webhook Need Help? Contact me via My Blog or ask in the Forum! Happy Hacking!
by Lucas Peyrin
How it works This template is a complete, hands-on tutorial for building a RAG (Retrieval-Augmented Generation) pipeline. In simple terms, you'll teach an AI to become an expert on a specific topic—in this case, the official n8n documentation—and then build a chatbot to ask it questions. Think of it like this: instead of a general-knowledge AI, you're building an expert librarian. The workflow is split into two main parts: Part 1: Indexing the Knowledge (Building the Library) This is a one-time process you run manually. The workflow automatically scrapes all pages of the n8n documentation, breaks them down into small, digestible chunks, and uses an AI model to create a special numerical representation (an "embedding") for each chunk. These embeddings are then stored in n8n's built-in Simple Vector Store. This is like a librarian reading every book and creating a hyper-detailed index card for every paragraph. Important: This in-memory knowledge base is temporary. It will be erased if you restart your n8n instance, and you will need to run the indexing process again. Part 2: The AI Agent (The Expert Librarian) This is the chat interface. When you ask a question, the AI agent doesn't guess the answer. Instead, it uses your question to find the most relevant "index cards" (chunks) from the knowledge base it just built. It then feeds these specific, relevant chunks to a powerful language model (Gemini) with a strict instruction: "Answer the user's question using ONLY this information." This ensures the answers are accurate, factual, and grounded in your provided documents. Set up steps Setup time: 2 minutes (plus 15-20 minutes for indexing) This template uses n8n's built-in tools, removing the need for an external database. Follow these simple steps to get started. Configure Google AI Credentials: You will need a Google AI API key for the Gemini models. In your n8n workflow, go to any of the three Gemini nodes (e.g., Gemini 2.5 Flash). Click the Credential dropdown and select + Create New Credential. Enter your Gemini API key and save. Apply Credentials to All Nodes: Your new Google AI credential is now saved. Go to the other two Gemini nodes (Gemini Chunk Embedding and Gemini Query Embedding) and select your newly created credential from the dropdown list. Build the Knowledge Base: Find the Start Indexing manual trigger node at the top-left of the workflow. Click its "Execute workflow" button to start the indexing process. ⚠️ Be Patient: This will take 15-20 minutes as it scrapes and processes the entire n8n documentation. You only need to do this once per n8n session. If you restart n8n, you must run this step again. Chat with Your Expert Agent: Once the indexing is complete, Activate the entire workflow using the toggle at the top of the screen. Open the RAG Chatbot chat trigger node (bottom-left) and copy its Public URL. Open the URL in a new tab and start asking questions about n8n! For example: "How does the IF node work?" or "What is a sub-workflow?".
by EoCi - Mr.Eo
This workflow contains community nodes that are only compatible with the self-hosted version of n8n. Introduction Tired of spending time crafting the perfect AI prompt? This workflow takes your simple ideas like "write a blog post" and automatically transforms them into detailed, structured prompts that actually work. 🎯 What This Does Automatically converts simple user prompts like "write a blog post" into structured, professional AI prompts with metadata, variables, and clear instructions. Perfect for everybody, all industries and organizations who are wanting to eliminate prompt engineering works. 🔄 How It Works Google Sheets Trigger monitors for new prompts AI Enhancement Pipeline uses Gemini + Groq to add structure & context Field Completion auto-generates missing metadata (topic, categories) Quality Assurance validates & stores complete results 🚀 Setup Requirements AI APIs**: Gemini, Telegram, Groq API keys Google Sheets**: 2 sheets (Main, ModifiedPrompt) 5 minutes setup time** - detailed instructions in blue sticky notes Set up steps Setup time: < 5 minutes Create a Google Spreadsheet with two tabs (sheets): OriginalPrompts and ModifiedPrompts. OriginalPrompts columns: Original Prompt ID | Model | Original Prompt | Created Time ModifiedPrompts columns (example): Modified Prompt ID | Original Prompt ID | Topic | Topic Categories | Modified Prompt | Prompt Title | Prompt Type | Model Used | Improvement Notes | Updated Time | Created Time | isProcessed Add and attach credentials in n8n: Google Sheets OAuth2 (required for getting new prompt) Gemini and Groq API credentials (required for AI Agent) Telegram credential (required for notifications) Save & Activate the workflow. Add a test row to OriginalPrompts, for example: Original Prompt ID: 1 — Original Prompt: "Write a short blog post about AI ethics". Wait ~30–60s and check ModifiedPrompts for the enhanced output. That’s it ! Once it configured, drop short ideas into your sheet and get professional prompts back automatically. Your prompts get better, your AI outputs improve, and you save hours of manual prompt crafting.
by Trung Tran
CV Extractor: Google Drive to Sheet + Slack Update for Recruiters Watch the demo video below: > This workflow automatically processes resumes (PDFs) uploaded or updated in a Google Drive folder. It extracts and structures the candidate’s information using AI, then updates or inserts the data into a Google Sheet, acting as a central talent database. Finally, it notifies the hiring team via Slack with a summary. Perfect for HR and TA teams, this automation eliminates the repetitive task of manually copying candidate details from CVs into spreadsheets, saving hours of admin work every week and keeping your hiring pipeline clean, fast, and up to date. 👤 Who’s it for This workflow is designed for: Recruiters* and *HR coordinators** who manage candidate profiles via Google Drive. Talent Acquisition teams** who want to automate CV parsing, enrichment, and database updating. Companies or hiring agencies** using spreadsheets for candidate tracking and CRM-like HR ops. ⚙️ How it works / What it does This smart and fully automated workflow: Monitors a Google Drive folder for any uploaded or updated resumes (PDFs). Downloads and extracts resume content using PDF parsing. Sends the raw text to GPT-4, which returns a structured profile (name, title, experience, skills, etc.). Verifies the profile and transforms it into a clean, row-based format. Upserts the candidate profile into a Google Sheet (insert or update by email). Notifies the hiring team in Slack or email that a profile was added or updated. This is a no-touch pipeline to keep your candidate data clean, current, and centralized. 🛠️ How to set up Step 1: Prepare your Google Drive folder Create a folder like /SmartHR/cv/ Upload sample resumes in .pdf format Step 2: Create your Google Sheet Columns to include: Email, FullName, JobTitle, Phone, Location, Experience, Education, Skills, etc. Optional: Add conditional formatting to highlight updates Step 3: Connect the n8n workflow Use the Google Drive Trigger: fileCreated → new profile uploaded fileUpdated → existing profile modified Use Google Drive (Download file) to fetch the resume Use Extract From PDF to get raw content Step 4: Configure GPT-4 node Use the structured system prompt to extract profile information Use json parser node to ensure safe formatting for next steps Step 5: Transform & Save Use a Function node to map fields to Google Sheet columns Use Append or update row (based on email as unique key) Optionally send Slack or email message to notify hiring team ✅ Requirements 🔑 OpenAI GPT-4 API key 🟩 n8n Cloud or Self-hosted with: Google Drive integration Google Sheets integration Email/Slack credentials (optional) 📄 Resume files in readable PDF format 📊 Google Sheet prepared with relevant headers ✏️ How to customize the workflow | Part | Customization Options | |----------------------------|----------------------------------------------------------------------------------------| | GPT Prompt | Tune for different job levels or fields (e.g., engineers vs marketers) | | Field Mapping | Update transform node to include other profile fields (LinkedIn, portfolio, etc.) | | Notification | Switch to Microsoft Teams, Telegram, or email alerts instead of Slack | | Data Store | Replace Google Sheet with Airtable, Notion, or database system | | Trigger Source | Trigger from email attachments or webhook instead of Google Drive if needed | | Output Format | Generate PDF profile cards or summary documents using HTML → PDF node |
by Yaron Been
Vcollos Trefilio AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the vcollos/trefilio model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: vcollos/trefilio API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yang
Who is this for? This workflow is perfect for lead generation experts, digital marketers, SEO professionals, and virtual assistants who need to quickly collect local business information based on specific search terms without manually navigating Google Places. What problem is this workflow solving? Manually searching Google Places for business leads is time-consuming and inconsistent. This workflow automates the entire process using Dumpling AI’s Google Places search endpoint, helping users collect accurate and structured business data and log it into a Google Sheet automatically. What this workflow does This workflow runs daily at 1 PM. It starts by reading a list of business-related search terms from a Google Sheet (for example, “dentists in Dallas”). Each term is sent to Dumpling AI’s search-places endpoint, which returns local business listings from Google Places. The data is split, structured, and logged row-by-row in a connected Google Sheet. Nodes Overview Run Every Day at 1 PM A scheduled trigger that executes the workflow daily. Google Sheets (Input) – Fetch Search Terms from Sheet Pulls a list of search terms from a Google Sheet. Each term should describe a business category and location (e.g., “coffee shops in Atlanta”). HTTP Request – Scrape Google Places via Dumpling AI Sends each search term to Dumpling AI’s /search-places endpoint, returning data like business names, phone numbers, websites, ratings, and categories. Split In Batches – Split Places Result Breaks the list of businesses returned for each search term into individual items for processing. Google Sheets (Output) – Save Each Business to Sheet Saves the scraped data into a second Google Sheet. Each row contains: title address rating category phoneNumber website 📝 Notes You must set up Dumpling AI and generate your API key from: Dumpling AI You can change the run schedule in the schedule node to fit your needs (e.g., weekly or hourly).
by Michael Gullo
Automated Binary Data Extraction from Gmail to Google Drive Folder This workflow is designed to automate the process of handling emails with binary attachments. It triggers when a new email arrives in a specified Gmail account (or can be configured with a similar email trigger) and is set to download any binary attachments. The workflow then filters the email to confirm it contains binary data (attachments). If attachments are present, it proceeds to retrieve the full email details, including all binary data. A crucial step is the creation of a new Google Drive folder. This folder is dynamically named using the email's subject and the current timestamp, for example, "[Email Subject] - [Current Timestamp]". Following this, the workflow separates each individual attachment from the email. Finally, these attachments are uploaded into the newly created Google Drive folder, with their original filenames preserved. The overall purpose of this workflow is to automatically organize and store email attachments into a structured Google Drive folder system. This workflow is compatible with any type of binary data found in an email, as the filter is designed to detect any binary data, not just PDFs. How It Works Trigger: The workflow initiates when a new email arrives in a specified Gmail account. Alternatively, it can be configured with a similar email trigger. Download Attachments: The workflow is set to automatically download any binary attachments from the incoming email. Filter Attachments: The workflow then filters the email to confirm it contains binary data (attachments). Retrieve Full Email Details: If attachments are present, the workflow proceeds to retrieve the complete details of the email, including all binary data. Create Google Drive Folder: A new folder is created in Google Drive. This folder is dynamically named using the email's subject and the current timestamp (e.g., "[Email Subject] - [Current Timestamp]"). Split Out Attachments: Each individual binary attachment from the email is separated into its own item within the workflow. Upload to Google Drive: Finally, these separated attachments are uploaded into the newly created Google Drive folder, retaining their original filenames. Need Help? Have Questions? For consulting and support, or if you have questions, please feel free to connect with me on LinkedIn or email michael.gullo@outlook.com.
by Viktor Klepikovskyi
Preventing Google Sheets Quota Errors during Batch Processing This template provides a robust solution for dealing with Google Sheets API rate limits. It is designed for workflows that update a large number of rows in a Google Sheet and frequently fail with "too many requests" errors. The template uses a Wait node connected to the error output of the Google Sheets node, creating a retry loop that delays execution for a set period before attempting the update again. To use this template, simply replace the placeholder Google Sheets nodes with your own credentials and sheet. You can find an example Google Sheet for this template here. For a full explanation of this approach, check out the blog post here.
by Yaron Been
Adamantiamable Lumi AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the adamantiamable/lumi model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: adamantiamable/lumi API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Izzaanel Betia AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the izzaanel/betia model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: izzaanel/betia API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Justingirard Draft Ui Designer Image Generator Description An experiment: a fine-tuned FLUX model for UI design generation Overview This n8n workflow integrates with the Replicate API to use the justingirard/draft-ui-designer model. This powerful AI model can generate high-quality image content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate image content Access the generated output from the final node API Reference Model: justingirard/draft-ui-designer API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of image generation parameters
by Yaron Been
Settyan Flash V2.0.1 Beta.10 AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the settyan/flash-v2.0.1-beta.10 model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: settyan/flash-v2.0.1-beta.10 API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters