by Yaron Been
Justingirard Draft Ui Designer Image Generator Description An experiment: a fine-tuned FLUX model for UI design generation Overview This n8n workflow integrates with the Replicate API to use the justingirard/draft-ui-designer model. This powerful AI model can generate high-quality image content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate image content Access the generated output from the final node API Reference Model: justingirard/draft-ui-designer API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of image generation parameters
by Yaron Been
Settyan Flash V2.0.1 Beta.10 AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the settyan/flash-v2.0.1-beta.10 model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: settyan/flash-v2.0.1-beta.10 API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Settyan Flash V2.0.0 Beta.10 AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the settyan/flash-v2.0.0-beta.10 model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: settyan/flash-v2.0.0-beta.10 API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Barbacoaexpert1 Ai Haircuts AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the barbacoaexpert1/ai-haircuts model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: barbacoaexpert1/ai-haircuts API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Monexia Nietgoed AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the monexia/nietgoed model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: monexia/nietgoed API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Harshil Agrawal
This example workflow demonstrates how to handle pagination. This example assumes that the API you are making the request to has pagination, and returns a cursor (something that points to the next page). This example workflow makes a request to the HubSpot API to fetch contacts. You will have to modify the parameters based on your API. Config URL node: This node sets the URL that the HTTP Request node calls. HTTP Request node: This node makes the API call and returns the data from the API. Based on your API, you will have to modify the parameters of the node. NoOp node and Wait node: These nodes help me avoiding any rate limits. If you're API has rate limits, make sure you configure the correct time in the Wait node. Check if pagination: This IF node checks if the API returns any cursor. If the API doesn't return any cursor, it means that there is no data to be fetched, and the node returns false. If the API returns a cursor, it means that there is still some data that needs to be fetched. In this case, the node returns true. Set next URL: This Set node is used to set the URL. In the next cycle, the HTTP Request node makes a call to this URL. Combine all data: This node combines all the data that gets returned by the API calls from the HTTP Request node.
by Bela
Sync your Google Sheets Data with your Postgres database table, requiring minimal adjustments. Follow these steps: Retrieve Data: Pull data from Google Sheets and PostgreSQL. Compare Datasets: Identify differences, focusing on new or updated entries. Update PostgreSQL: Apply changes to ensure both platforms mirror each other. Automate this process to regularly synchronize data. Before starting, grant necessary access to both Google Sheets and PostgreSQL, and specify the data details for synchronization. This streamlined workflow enhances data consistency across platforms. This example is a one-way synchronization from Google Sheets into your Postgres. With small adjustments, you can make it the other way around, or 2-way.
by darrell_tw
Workflow Description This workflow demonstrates how to use the LINE Messaging API to handle two scenarios: Replying to a user's message using a reply token. Sending a push message to a specific LINE user using their user ID. Key Features Webhook Integration: Receives and processes incoming messages from LINE using a webhook. Conditional Logic: Checks if the received event type is a message and handles it accordingly. Reply Message: Automatically responds to the user's message using the LINE reply token. Push Message: Sends a test message to a specific LINE user using their unique user ID. Pre-Configuration To simplify the setup process, create a Header Auth credential in n8n: Name**: Authorization Value**: Bearer {line token} This will authenticate all API requests to the LINE Messaging API. Node Configurations 1.1. Webhook from LINE Message Purpose**: Captures incoming events from the LINE Messaging API. Configuration**: HTTP Method: POST Path: {n8n-webhook-page} 1.2. If Condition Purpose**: Checks if the received event type is message. Configuration**: Condition: {{ $json.body.events[0].type }} equals "message" 1.3. Line: Reply with Token Purpose**: Replies to the user's message using the LINE reply token. Configuration**: Method: POST URL: https://api.line.me/v2/bot/message/reply JSON Body: { "replyToken": "{{ $('Webhook from Line Message').item.json.body.events[0].replyToken }}", "messages": [ { "type": "text", "text": "收到您的訊息 : {{ $('Webhook from Line Message').item.json.body.events[0].message.text }}" } ] } 2.1. Manual Trigger: Test Workflow Purpose**: Triggers the workflow for testing the push message functionality. Configuration**: No additional setup required. 2.2. Edit Fields Purpose**: Prepares the unique LINE user ID for the push message. Configuration**: Field: line_uid: Uxxxxxxxxxxxx 2.3. Line: Push Message Purpose**: Sends a test message to a specific LINE user. Configuration**: Method: POST URL: https://api.line.me/v2/bot/message/push JSON Body: { "to": "{{ $json.line_uid }}", "messages": [ { "type": "text", "text": "推播測試" } ] } 工作流程描述 此工作流程展示如何使用 LINE Messaging API 處理兩種情境: 使用 reply token 回應使用者的訊息。 使用使用者的 user ID 發送 推播訊息。 主要功能 Webhook 整合:透過 Webhook 接收並處理來自 LINE 的訊息。 條件邏輯:檢查接收到的事件類型是否為訊息並進行處理。 回應訊息:使用 LINE 的 reply token 自動回覆使用者的訊息。 推播訊息:使用 LINE User ID 向指定用戶發送測試訊息。 預先設定 為簡化設定流程,請在 n8n 中建立 Header Auth 憑證: 名稱**:Authorization 值**:Bearer {line token} 此設定將用於認證所有 LINE Messaging API 的請求。 節點設定 1.1. Webhook from LINE Message 用途**:接收來自 LINE Messaging API 的事件。 設定**: HTTP 方法:POST 路徑:{n8n-webhook-page} 1.2. If 條件判斷 用途**:檢查接收到的事件類型是否為 message。 設定**: 條件: {{ $json.body.events[0].type }} 等於 "message" 1.3. Line: Reply with Token 用途**:使用 LINE reply token 回應使用者訊息。 設定**: 方法:POST URL:https://api.line.me/v2/bot/message/reply JSON 主體: { "replyToken": "{{ $('Webhook from Line Message').item.json.body.events[0].replyToken }}", "messages": [ { "type": "text", "text": "收到您的訊息 : {{ $('Webhook from Line Message').item.json.body.events[0].message.text }}" } ] } 2.1. 手動觸發:測試工作流程 用途**:測試推播訊息功能。 設定**:無需額外設定。 2.2. Edit Fields 用途**:準備推播訊息所需的 LINE 使用者 ID。 設定**: 欄位: line_uid:Uxxxxxxxxxxxx 2.3. Line: 推播訊息 用途**:向特定 LINE 使用者發送測試訊息。 設定**: 方法:POST URL:https://api.line.me/v2/bot/message/push JSON 主體: { "to": "{{ $json.line_uid }}", "messages": [ { "type": "text", "text": "推播測試" } ] } 完成示意圖 (Storyboard Example):
by Davide
1. How it Works This n8n workflow automates fine-tuning OpenAI models through these key steps: Manual Trigger**: Starts with the "When clicking ‘Test workflow’" event to initiate the process. Downloads a .jsonl file from Google Drive Upload to OpenAI**: Uploads the .jsonl file to OpenAI via the "Upload File" node (with purpose "fine-tune"). Create Fine-tuning Job**: Sends a POST request to the endpoint https://api.openai.com/v1/fine_tuning/jobs with: { "training_file": "{{ $json.id }}", "model": "gpt-4o-mini-2024-07-18" } OpenAI automatically starts training the model based on the provided file. Interaction with the Trained Model**: An "AI Agent" uses the custom model (e.g., ft:gpt-4o-mini-2024-07-18:n3w-italia::XXXX7B) to respond to chat messages. 2. Set up Steps To configure the workflow: Prepare the Training File: Create a .jsonl file following the specified syntax (e.g., travel assistant Q/A examples). Upload it to Google Drive and update the ID in the "Google Drive" node. Configure Credentials: Google Drive: Connect an account via OAuth2 (googleDriveOAuth2Api). OpenAI: Add your API key in the "OpenAI Chat Model" and "Upload File" nodes. Customize the Model: In the "OpenAI Chat Model" node, specify the name of your fine-tuned model (e.g., ft:gpt-4o-mini-...). Update the HTTP request body (Create Fine-tuning Job) if needed (e.g., a different base model). Start the Workflow: Use the manual trigger ("Test workflow") to begin the upload and training process. Test the model via the "Chat Trigger" (chat messages). Integrated Documentation: Follow the instructions in the Sticky Notes to: Properly format the .jsonl (Step 1). Monitor progress on OpenAI (Step 2, link: https://platform.openai.com/finetune/). Note: Ensure the .jsonl file adheres to OpenAI’s required structure and that credentials are valid.
by Harshil Agrawal
This workflow demonstrates the use of the Split In Batches node and the Wait node to avoid API rate limits. Customer Datastore node: The workflow fetches data from the Customer Datastore node. Based on your use case, replace it with a relevant node. Split In Batches node: This node splits the items into a single item. Based on the API limit, you can configure the Batch Size. HTTP Request node: This node makes API calls to a placeholder URL. If the Split In Batches node returns 5 items, the HTTP Request node will make 5 different API calls. Wait node: This node will pause the workflow for the time you specify. On resume, the Split In Batches node gets executed node, and the next batch is processed. Replace Me (NoOp node): This node is optional. If you want to continue your workflow and process the items, replace this node with the corresponding node(s).
by Tom
This workflow identifies new rows in Google Sheets using a separate column keeping track of already processed rows. For this approach to work, the sheet needs to meet two requirements: A unique identifier for each row is required A column used to differentiate new/processed rows is present Our example sheet looks like this: So the row identifier is named ID, the new/processed column is called Processed. Update the workflow accordingly if your columns have different names. Now if the workflow runs, it discovers all three rows as new. After processing them, it will add a timestamp to the Processed column: The next time the workflow is executed it will skip the existing rows and only process newly added data:
by Tom
This workflow shows a low code approach to parsing an XML file and storing its contents in a Google Sheets spreadsheet. To run the workflow: Make sure you are running n8n 0.197 or newer Have n8n authenticated with Google Sheets How it's done: This workflow first downloads an example file using the HTTP Request node and reads this file using the XML node. It then runs the Item Lists node to split out the individual food items from the example file. It then splits up the workflow into a separate branch creating a new spreadsheet file using the Google Sheets node. To read the column names we're using the Object.keys() method inside a Set node. Once the spreadsheet is created (the workflow waits for this using the Merge node), the data is appended to the newly created sheet (again using the Google Sheets node).