by darrell_tw
Workflow Description This workflow demonstrates how to use the LINE Messaging API to handle two scenarios: Replying to a user's message using a reply token. Sending a push message to a specific LINE user using their user ID. Key Features Webhook Integration: Receives and processes incoming messages from LINE using a webhook. Conditional Logic: Checks if the received event type is a message and handles it accordingly. Reply Message: Automatically responds to the user's message using the LINE reply token. Push Message: Sends a test message to a specific LINE user using their unique user ID. Pre-Configuration To simplify the setup process, create a Header Auth credential in n8n: Name**: Authorization Value**: Bearer {line token} This will authenticate all API requests to the LINE Messaging API. Node Configurations 1.1. Webhook from LINE Message Purpose**: Captures incoming events from the LINE Messaging API. Configuration**: HTTP Method: POST Path: {n8n-webhook-page} 1.2. If Condition Purpose**: Checks if the received event type is message. Configuration**: Condition: {{ $json.body.events[0].type }} equals "message" 1.3. Line: Reply with Token Purpose**: Replies to the user's message using the LINE reply token. Configuration**: Method: POST URL: https://api.line.me/v2/bot/message/reply JSON Body: { "replyToken": "{{ $('Webhook from Line Message').item.json.body.events[0].replyToken }}", "messages": [ { "type": "text", "text": "收到您的訊息 : {{ $('Webhook from Line Message').item.json.body.events[0].message.text }}" } ] } 2.1. Manual Trigger: Test Workflow Purpose**: Triggers the workflow for testing the push message functionality. Configuration**: No additional setup required. 2.2. Edit Fields Purpose**: Prepares the unique LINE user ID for the push message. Configuration**: Field: line_uid: Uxxxxxxxxxxxx 2.3. Line: Push Message Purpose**: Sends a test message to a specific LINE user. Configuration**: Method: POST URL: https://api.line.me/v2/bot/message/push JSON Body: { "to": "{{ $json.line_uid }}", "messages": [ { "type": "text", "text": "推播測試" } ] } 工作流程描述 此工作流程展示如何使用 LINE Messaging API 處理兩種情境: 使用 reply token 回應使用者的訊息。 使用使用者的 user ID 發送 推播訊息。 主要功能 Webhook 整合:透過 Webhook 接收並處理來自 LINE 的訊息。 條件邏輯:檢查接收到的事件類型是否為訊息並進行處理。 回應訊息:使用 LINE 的 reply token 自動回覆使用者的訊息。 推播訊息:使用 LINE User ID 向指定用戶發送測試訊息。 預先設定 為簡化設定流程,請在 n8n 中建立 Header Auth 憑證: 名稱**:Authorization 值**:Bearer {line token} 此設定將用於認證所有 LINE Messaging API 的請求。 節點設定 1.1. Webhook from LINE Message 用途**:接收來自 LINE Messaging API 的事件。 設定**: HTTP 方法:POST 路徑:{n8n-webhook-page} 1.2. If 條件判斷 用途**:檢查接收到的事件類型是否為 message。 設定**: 條件: {{ $json.body.events[0].type }} 等於 "message" 1.3. Line: Reply with Token 用途**:使用 LINE reply token 回應使用者訊息。 設定**: 方法:POST URL:https://api.line.me/v2/bot/message/reply JSON 主體: { "replyToken": "{{ $('Webhook from Line Message').item.json.body.events[0].replyToken }}", "messages": [ { "type": "text", "text": "收到您的訊息 : {{ $('Webhook from Line Message').item.json.body.events[0].message.text }}" } ] } 2.1. 手動觸發:測試工作流程 用途**:測試推播訊息功能。 設定**:無需額外設定。 2.2. Edit Fields 用途**:準備推播訊息所需的 LINE 使用者 ID。 設定**: 欄位: line_uid:Uxxxxxxxxxxxx 2.3. Line: 推播訊息 用途**:向特定 LINE 使用者發送測試訊息。 設定**: 方法:POST URL:https://api.line.me/v2/bot/message/push JSON 主體: { "to": "{{ $json.line_uid }}", "messages": [ { "type": "text", "text": "推播測試" } ] } 完成示意圖 (Storyboard Example):
by Davide
1. How it Works This n8n workflow automates fine-tuning OpenAI models through these key steps: Manual Trigger**: Starts with the "When clicking ‘Test workflow’" event to initiate the process. Downloads a .jsonl file from Google Drive Upload to OpenAI**: Uploads the .jsonl file to OpenAI via the "Upload File" node (with purpose "fine-tune"). Create Fine-tuning Job**: Sends a POST request to the endpoint https://api.openai.com/v1/fine_tuning/jobs with: { "training_file": "{{ $json.id }}", "model": "gpt-4o-mini-2024-07-18" } OpenAI automatically starts training the model based on the provided file. Interaction with the Trained Model**: An "AI Agent" uses the custom model (e.g., ft:gpt-4o-mini-2024-07-18:n3w-italia::XXXX7B) to respond to chat messages. 2. Set up Steps To configure the workflow: Prepare the Training File: Create a .jsonl file following the specified syntax (e.g., travel assistant Q/A examples). Upload it to Google Drive and update the ID in the "Google Drive" node. Configure Credentials: Google Drive: Connect an account via OAuth2 (googleDriveOAuth2Api). OpenAI: Add your API key in the "OpenAI Chat Model" and "Upload File" nodes. Customize the Model: In the "OpenAI Chat Model" node, specify the name of your fine-tuned model (e.g., ft:gpt-4o-mini-...). Update the HTTP request body (Create Fine-tuning Job) if needed (e.g., a different base model). Start the Workflow: Use the manual trigger ("Test workflow") to begin the upload and training process. Test the model via the "Chat Trigger" (chat messages). Integrated Documentation: Follow the instructions in the Sticky Notes to: Properly format the .jsonl (Step 1). Monitor progress on OpenAI (Step 2, link: https://platform.openai.com/finetune/). Note: Ensure the .jsonl file adheres to OpenAI’s required structure and that credentials are valid.
by Samir Saci
Tags: Automation, Finance, Google Sheets, API Note: This workflow uses the Exchange rate API and requires a valid API key. Context I’m a Supply Chain Data Scientist who builds automations to streamline operations, reduce manual tasks, and boost decision-making through real-time data. In this workflow, I automated the task of fetching live currency exchange rates, updating a Google Sheet with the latest values, and archiving historical records — all without writing any code. > Improve your productivity by automating admin tasks with n8n! 📬 For business inquiries, you can add me on LinkedIn Who is this template for? This template is perfect for: Finance teams** tracking multi-currency cashflows Analysts** building dashboards or models requiring updated FX data Anyone working with spreadsheets** who needs up-to-date exchange rates It updates: A live sheet with the latest USD-based exchange rates An archive tab to track historical changes over time How does it work? This workflow runs in N8N and performs the following steps: 🌐 Calls the ExchangeRate API to get the latest rates based on USD 🧠 Extracts and formats key fields: base currency, timestamp, and conversion values 📊 Updates a main Google Sheet with the latest data (using upsert logic) 🗂️ Appends all rates to a second Google Sheet tab for historical tracking You can schedule this workflow to run daily, hourly, or on-demand. What do I need to start? You don’t need to write a single line of code. Prerequisites: A Google Sheet with two tabs: Rate Sheet and Archives (Link of the publicly available example in the template) A valid Exchangerate API key Google Sheets API** connected via OAuth2 Next Steps Use the sticky notes in the workflow to understand how to: Add your Exchangerate API key Map the fields to match your Google Sheet layout Schedule the run frequency using the Cron node Optionally add Slack or email alerts if the base rate changes For more information, check my tutorial: 🎥 Watch My Tutorial 🚀 Want to build finance automation workflows like this? 📬 Let’s connect on LinkedIn Notes You can adapt this template for other currencies by changing the API endpoint This workflow was built using *n8n 1.85.4** Submitted: April 15th, 2025*
by Trung Tran
🤖 Smart Interview Assistant: Tailored Questions Based on CV, JD, and Round Watch the demo video below: 📌 Who’s it for This workflow is designed for: Recruiters* and *Talent Acquisition Specialists** who want to automate candidate interview prep. Hiring Managers** conducting multiple interviews and needing personalized question sets. Technical Interviewers** who want to save time and be well-prepared with relevant questions. ⚙️ How it works / What it does The Smart Interview Assistant automates the interview preparation process in a few clicks: Accepts: Multiple resumes (PDFs) Selected job role Chosen interview round Extracts structured data from: The candidate’s CV The corresponding Job Description (JD) Uses GPT-4 to analyze: Candidate profile Role requirements Interview round context Generates: Tailored interview questions Expected answers A summarized interview prep report Sends the report directly to the hiring team via email (SMTP) 📁 Google Drive Structure 📂 Root Folder ├── 📁 jd/ # Stores all job descriptions in PDF format │ ├── Backend_Engineer.pdf │ ├── Azure_DevOps_Lead.pdf │ └── ... └── 📄 Positions (Google Sheet) # Maps Job Role ↔ JD File Link 📝 Sample Mapping Sheet: Positions Sheet Columns: Job Role Job Description File URL (pointing to PDF in jd/ folder) 🛠️ How to Set Up Step 1: Configure API Integrations ✅ Connect your OpenAI GPT-4 API Key ✅ Enable Google Cloud APIs: Google Sheets API (to read job roles) Google Drive API (to access CV and JD files) ✅ Set up SMTP credentials (for email delivery) Step 2: Prepare Google Drive & Mapping Sheet Create a root folder on Google Drive Inside the root folder: Create a folder named /jd/ and upload all job descriptions (PDFs) Create a Google Sheet named Positions with the following format: | Job Role | Job Description File URL | |-----------------------------|--------------------------------------------| | Azure DevOps Engineer | https://drive.google.com/xxx/jd1.pdf | | Full-Stack Developer (.NET) | https://drive.google.com/xxx/jd2.pdf | Step 3: Build the Application Form Use any form tool (e.g., Typeform, Tally, or custom HTML) that collects: 📎 Resume file (PDF) 🧾 Job Role (dropdown) 🔄 Interview Round (dropdown) Step 4: Resume & JD Extraction 🔍 Use Extract from PDF to parse the resume content 📄 Retrieve the JD link from the Positions sheet based on the selected Job Role 🔗 Use Download file to pull the PDF for processing Step 5: Analyze with GPT-4 Run both Resume and JD through a Profile Analyzer Agent (GPT-4 with JSON output) Merge results Add manual input or mapping for the Interview Round metadata Step 6: Generate Interview Report Use a second GPT-4 agent (e.g., HR Expert Agent) to: Generate 6–8 tailored interview questions Include expected answers and rationale Step 7: Deliver Final Report Format the content as: 📄 PDF (optional) 📨 Email body Send the report to the recruiter, hiring manager, or interviewer via SMTP ✅ Requirements 🔑 OpenAI GPT-4 API Key 📁 Google Drive (for resume and JD storage) 📊 Google Sheet (job role mapping) 📬 SMTP credentials (host, username, password) 🧰 n8n self-hosted or cloud instance with: PDF Parser Google Sheets node HTTP Download node Email node ✏️ How to Customize the Workflow | Part | Customization Options | |----------------------------|-------------------------------------------------------------| | Form UI | Modify the design, dropdown options, or input validations | | Job Description Source | Replace Google Sheet with Notion, Airtable, or database | | Interview Metadata | Add job level, region, or language preference | | AI Prompt Tuning | Adjust prompt phrasing or temperature in GPT nodes | | Report Format | Generate PDF instead of email body using PDF node | | Delivery Method | Add internal HR portal webhook or generate downloadable link |
by Yaron Been
Citoreh Nazanin AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the citoreh/nazanin model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: citoreh/nazanin API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Settyan Flash V2.0.0 Beta.9 AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the settyan/flash-v2.0.0-beta.9 model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: settyan/flash-v2.0.0-beta.9 API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Zacharia Kimotho
This is an example of how we can build a slack bot in a few easy steps Before you can start, you need to o a few things Create a copy of this workflow Create a slack bot Create a slash command on slack and paste the webhook url to the slack command Note Make sure to configure this webhook using a https:// wrapper and don't use the default http://localhost:5678 as that will not be recognized by your slack webhook. Once the data has been sent to your webhook, the next step will be passing it via an AI Agent to process data based on the queries we pass to our agent. To have some sort of a memory, be sure to set the slack token to the memory node. This way you can refer to other chats from the history. The final message is relayed back to slack as a new message. Since we can not wait longer than 3000 ms for slack response, we will create a new message with reference to the input we passed. We can advance this using the tools or data sources for it to be more custom tailored for your company. Usage To use the slackbot, go to slack and click on your set slash command eg /Bob and send your desired message. This will send the message to your endpoint and get return the processed results as the message. If you would like help setting this up, feel free to reach out to zacharia@effibotics.com
by Yaron Been
Creativeathive Lemaar Door Urban AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the creativeathive/lemaar-door-urban model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: creativeathive/lemaar-door-urban API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by CustomJS
This n8n workflow shows how to convert PDF files into PNG format with the PDF Toolkit from www.customjs.space. @custom-js/n8n-nodes-pdf-toolkit Notice Community nodes can only be installed on self-hosted instances of n8n. What this workflow does Generate** PDF file from the requested HTML. Convert** the PDF to PNG images. Use** a Code node to handle URLs that point to PDF files. Convert** the PDF to PNG format. Requirements Self-hosted** n8n instance. CustomJS API key** for converting PDF to PNG. HTML** Data to convert PDF files. Code node** for handling URL that indicates PDF file. Workflow Steps: Manual Trigger: Runs with user interaction. HTML to PDF: Request HTML Data. Convert HTML to PDF. Request PDF from Code. Convert PDF to PNG: Convert the generated PNG from PDF Usage Get API key from customJS Sign up to customJS platform. Navigate to your profile page Press "Show" button to get API key Set Credentials for CustomJS API on n8n Copy and paste your API key generated from CustomJS here. Design workflow A Manual Trigger for starting workflow. HTTP Request Nodes for downloading PDF files. Code node for handling URL that indicates PDF file. Convert PDF to PNG. You can replace logic for triggering and returning results. For example, you can trigger this workflow by calling a webhook and get a result as a response from webhook. Simply replace Manual Trigger and Write to Disk nodes.
by Yaron Been
Settyan Flash V2.0.0 Beta.1 AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the settyan/flash-v2.0.0-beta.1 model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: settyan/flash-v2.0.0-beta.1 API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Jfirma1 Test_model AI Generator Description test model Overview This n8n workflow integrates with the Replicate API to use the jfirma1/test_model model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: jfirma1/test_model API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Creativeathive Lemaar Door Wm AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the creativeathive/lemaar-door-wm model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: creativeathive/lemaar-door-wm API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters