by Muhammad Ali
Description How it works This powerful workflow helps businesses and freelancers automatically manage invoices received on WhatsApp. It detects new messages, downloads attached invoices, extracts key data using OCR (Optical Character Recognition), summarizes the details with AI, updates Google Sheets for record-keeping, saves files to Google Drive, and instantly replies with a clean summary message all without manual effort. Perfect for small businesses, agencies, accountants, and freelancers who regularly receive invoices via WhatsApp. Say goodbye to manual data entry and hello to effortless automation. Set up steps Setup takes around 10–15 minutes: Connect your WhatsApp Cloud API to trigger incoming messages. Add your OCR.Space API key to extract invoice text. Link your Google Sheets and Google Drive accounts for data logging and storage. Enter your OpenAI API key for AI-based summarization. Import the template, test once, and you’re ready to automate your invoice workflow. Why use this workflow Save hours of manual data entry Keep all invoices safely stored and organized in Drive Get instant summaries directly in WhatsApp Improve efficiency for client billing, and expense tracking.
by Jay Emp0
Automatically turns trending Reddit posts into punchy, first-person tweets powered by Google Gemini AI, Reddit, and Twitter API, with Google Sheets logging. 🧩 Overview This workflow repurposes Reddit content into original tweets every few hours. It’s perfect for creators, marketers, or founders who want to automate content inspiration while keeping tweets sounding human, edgy, and fresh. Core automation loop: Fetch trending Reddit posts from selected subreddits. Use Gemini AI to write a short, first-person tweet. Check your Google Sheet to avoid reusing the same Reddit post. Publish to Twitter automatically. Log tweet + Reddit reference in Google Sheets. 🧠 Workflow Diagram 🪄 How It Works 1️⃣ Every 2 hours → the workflow triggers automatically. 2️⃣ It picks a subreddit (like r/automation, r/n8n, r/SaaS). 3️⃣ Gemini AI analyzes a rising Reddit post and writes a fresh, short tweet. 4️⃣ The system checks your Google Sheet to ensure it hasn’t used that Reddit post before. 5️⃣ Once validated, the tweet is published via Twitter API and logged. 🧠 Example Tweet Output 📊 Logged Data (Google Sheets) Each tweet is automatically logged for version control and duplication checks. | Date | Subreddit | Post ID | Tweet Text | |------|------------|----------|-------------| | 08/10/2025 | n8n_ai_agents | 1o16ome | Just saw a wild n8n workflow on Reddit... | ⚙️ Key Components | Node | Function | |------|-----------| | Schedule Trigger | Runs every 2 hours to generate a new tweet. | | Code (Randomly Decide Subreddit) | Picks one subreddit randomly from your preset list. | | Gemini Chat Model | Generates tweet text in first person tone using custom prompt rules. | | Reddit Tool | Fetches top or rising posts from the chosen subreddit. | | Google Sheets (read database) | Keeps a record of already-used Reddit posts. | | Structured Output Parser | Ensures consistent tweet formatting (tweet text, subreddit, post ID). | | Twitter Node | Publishes the AI-generated tweet. | | Append Row in Sheet | Logs the tweet with date, subreddit, and post ID. | 🧩 Setup Tutorial 1️⃣ Prerequisites | Tool | Purpose | |------|----------| | n8n Cloud or Self-Host | Workflow execution | | Google Gemini API Key | For tweet generation | | Reddit OAuth2 API | To fetch posts | | Twitter (X) API OAuth2 | To publish tweets | | Google Sheets API | For logging and duplication tracking | 2️⃣ Import the Workflow Download Reddit Twitter Automation.json. In n8n, click Import Workflow → From File. Connect your credentials: Gemini → Gemini Reddit → Reddit account Twitter → X Google Sheets → Gsheet 3️⃣ Configure Google Sheet Your sheet must include these columns: | Column | Description | |--------|--------------| | PAST TWEETS | The tweet text | | Date | Auto-generated date | | subreddit | Reddit source | | post_id | Reddit post reference | 4️⃣ Customize Subreddits In the Code Node, update this array to choose which subreddits to monitor: const subreddits = [ "n8n", "microsaas", "SaaS", "automation", "n8n_ai_agents" ];
by Roshan Ramani
🛒 Smart Telegram Shopping Assistant with AI Product Recommendations Workflow Overview Target User Role: E-commerce Business Owners, Affiliate Marketers, Customer Support Teams Problem Solved: Businesses need an automated way to help customers find products on Telegram without manual intervention, while providing intelligent recommendations that increase conversion rates. Opportunity Created: Transform any Telegram channel into a smart shopping assistant that can handle both product queries and customer conversations automatically. What This Workflow Does This workflow creates an intelligent Telegram bot that: 🤖 Automatically detects** whether users are asking about products or just chatting 🛒 Scrapes Amazon** in real-time to find the best matching products 🎯 Uses AI to analyze and rank** products based on price, ratings, and user needs 📱 Delivers perfectly formatted** recommendations optimized for Telegram 💬 Handles casual conversations** professionally when users aren't shopping Real-World Use Cases E-commerce Support**: Reduce customer service workload by 70% Affiliate Marketing**: Automatically recommend products with tracking links Telegram Communities**: Add shopping capabilities to existing channels Product Discovery**: Help customers find products they didn't know existed Key Features & Benefits 🧠 Intelligent Intent Detection Uses Google Gemini AI to understand user messages Automatically routes to product search or conversation mode Handles multiple languages and casual typing styles 🛒 Real-Time Product Data Integrates with Apify's Amazon scraper for live data Fetches prices, ratings, reviews, and product details Processes up to 10 products per search instantly 🎯 AI-Powered Recommendations Analyzes multiple products simultaneously Ranks by relevance, value, and user satisfaction Provides top 5 personalized recommendations with reasoning 📱 Telegram-Optimized Output Perfect formatting with emojis and markdown Respects character limits for mobile viewing Includes direct purchase links for easy buying Setup Requirements Required Credentials Telegram Bot Token - Free from @BotFather Google Gemini API Key - Free tier available at AI Studio Apify API Token - Free tier includes 100 requests/month Required n8n Nodes @n8n/n8n-nodes-langchain (for AI functionality) Built-in Telegram, HTTP Request, and Code nodes Quick Setup Guide Step 1: Telegram Bot Creation Message @BotFather on Telegram Create new bot with /newbot command Copy the bot token to your credentials Step 2: AI Configuration Sign up for Google AI Studio Generate API key for Gemini Add credentials to all three AI model nodes Step 3: Product Scraping Setup Register for free Apify account Get API token from dashboard Add token to "Amazon Product Scraper" node Step 4: Activation Import workflow JSON Add your credentials Activate the Telegram Trigger Test with a product query! Workflow Architecture 📱 Message Entry Point Telegram Trigger receives all messages 🧹 Query Preprocessing Cleans and normalizes user input for better search results 🤖 AI Intent Classification Determines if message is product-related or conversational 🔀 Smart Routing Directs to appropriate workflow path based on intent 💬 Conversation Path Handles greetings, questions, and general support 🛒 Product Search Path Scrapes Amazon → Processes data → AI analysis → Recommendations 📤 Optimized Delivery Formats and sends responses back to Telegram Customization Opportunities Easy Modifications Multiple Marketplaces**: Add eBay, Flipkart, or local stores Product Categories**: Specialize for electronics, fashion, etc. Language Support**: Translate for different markets Branding**: Customize responses with your brand voice Advanced Extensions Price Monitoring**: Set up alerts for price drops User Preferences**: Remember customer preferences Analytics Dashboard**: Track popular products and queries Affiliate Integration**: Add commission tracking links Success Metrics & ROI Performance Benchmarks Response Time**: 3-5 seconds for product queries Accuracy**: 90%+ relevant product matches User Satisfaction**: 85%+ positive feedback in testing Business Impact Reduced Support Costs**: Automate 70% of product inquiries Increased Conversions**: Personalized recommendations boost sales 24/7 Availability**: Never miss a customer inquiry Scalability**: Handle unlimited concurrent users Workflow Complexity Intermediate Level - Requires API setup but includes detailed instructions. Perfect for users with basic n8n experience who want to create something powerful.
by Rahul Joshi
Automatically detect, classify, and document GitHub API errors using AI. This workflow connects GitHub, OpenAI (GPT-4o), Airtable, Notion, and Slack to build a real-time, searchable API error knowledge base — helping engineering and support teams respond faster, stay aligned, and maintain clean documentation. ⚙️📘💬 🚀 What This Template Does 1️⃣ Triggers on new or updated GitHub issues (API-related). 🪝 2️⃣ Extracts key fields (title, body, repo, and link). 📄 3️⃣ Classifies issues using OpenAI GPT-4o, identifying error type, category, root cause, and severity. 🤖 4️⃣ Validates & parses AI output into structured JSON format. ✅ 5️⃣ Creates or updates organized FAQ-style entries in Airtable for quick lookup. 🗂️ 6️⃣ Logs detailed entries into Notion, maintaining an ongoing issue knowledge base. 📘 7️⃣ Notifies the right Slack team channel (DevOps, Backend, API, Support) with concise summaries. 💬 8️⃣ Tracks & prevents duplicates, keeping your error catalog clean and auditable. 🔄 💡 Key Benefits ✅ Converts unstructured GitHub issues into AI-analyzed documentation ✅ Centralizes API error intelligence across teams ✅ Reduces time-to-resolution for recurring issues ✅ Maintains synchronized records in Airtable & Notion ✅ Keeps DevOps and Support instantly informed through Slack alerts ✅ Fully automated, scalable, and low-cost using GPT-4o ⚙️ Features Real-time GitHub trigger for API or backend issues GPT-4o-based AI classification (error type, cause, severity, confidence) Smart duplicate prevention logic Bi-directional sync to Airtable + Notion Slack alerts with contextual AI insights Modular design — easy to extend with Jira, Teams, or email integrations 🧰 Requirements GitHub OAuth2 credentials OpenAI API key (GPT-4o recommended) Airtable Base & Table IDs (with fields like Error Code, Category, Severity, Root Cause) Notion integration with database access Slack Bot token with chat:write scope 👥 Target Audience Engineering & DevOps teams managing APIs Customer support & SRE teams maintaining FAQs Product managers tracking recurring API issues SaaS orgs automating documentation & error visibility 🪜 Step-by-Step Setup Instructions 1️⃣ Connect your GitHub account and enable the “issues” webhook event. 2️⃣ Add OpenAI credentials (GPT-4o model for classification). 3️⃣ Create an Airtable base with fields: Error Code, Category, Root Cause, Severity, Confidence. 4️⃣ Configure your Notion database with matching schema and access. 5️⃣ Set up Slack credentials and choose your alert channels. 6️⃣ Test with a sample GitHub issue to validate AI classification. 7️⃣ Enable the workflow — enjoy continuous AI-powered issue documentation!
by Avkash Kakdiya
How it works This workflow runs daily to review all active deals and evaluate their likelihood of closing successfully. It enriches deal data with recent engagement activity and applies AI-based behavioral scoring to predict conversion probability. High-risk or stalled deals are flagged automatically. Actionable alerts are sent to the sales team, and all analysis is logged for forecasting and tracking. Step-by-step Trigger and fetch deals** Schedule Trigger – Runs the workflow automatically at a fixed time each day. Get Active Deals from HubSpot – Retrieves all open, non-closed deals with key properties. Formatting Data – Normalizes deal fields such as value, stage, age, contacts, and activity dates. Enrich deals with engagement data** If – Filters only active deals for further processing. Loop Over Items – Processes each deal individually. HTTP Request – Fetches engagement associations for the current deal. Get an engagement – Retrieves detailed engagement records from HubSpot. Extracts Data – Structures engagement content, timestamps, and metadata for analysis. Analyze risk, alert, and store results** OpenAI Chat Model – Provides the language model used for analysis. AI Agent – Evaluates behavioral signals, predicts conversion probability, and recommends actions. Format Data – Parses AI output into structured, machine-readable fields. Filter Alerts Needed – Identifies deals that need immediate attention. Send Slack Alert – Sends detailed alerts for high-risk or stalled deals. Append or update row in sheet – Logs analysis results into Google Sheets for reporting. Why use this? Automatically identify high-risk deals before they stall or fail Give sales teams clear, data-driven next actions instead of raw CRM data Improve forecasting accuracy with AI-powered probability scoring Maintain a historical deal health log for audits and performance reviews Reduce manual pipeline reviews while increasing response speed
by Khairul Muhtadin
Decodo Amazon Product Recommender delivers instant, AI-powered shopping recommendations directly through Telegram. Send any product name and receive Amazon product analysis featuring price comparisons, ratings, sales data, and categorized recommendations (budget, premium, best value) in under 40 seconds—eliminating hours of manual research. Why Use This Workflow? Time Savings: Reduce product research from 45+ minutes to under 30 seconds Decision Quality: Compare 20+ products automatically with AI-curated recommendations Zero Manual Work: Complete automation from message input to formatted recommendations Ideal For E-commerce Entrepreneurs:** Quickly research competitor products, pricing strategies, and market trends for inventory decisions Smart Shoppers & Deal Hunters:** Get instant product comparisons with sales volume data and discount tracking before purchasing Product Managers & Researchers:** Analyze Amazon marketplace positioning, customer sentiment, and pricing ranges for competitive intelligence How It Works Trigger: User sends product name via Telegram (e.g., "iPhone 15 Pro Max case") AI Validation: Gemini 2.5 Flash extracts core product keywords and validates input authenticity Data Collection: Decodo API scrapes Amazon search results, extracting prices, ratings, reviews, sales volume, and product URLs Processing: JavaScript node cleans data, removes duplicates, calculates value scores, and categorizes products (top picks, budget, premium, best value, most popular) Intelligence Layer: AI generates personalized recommendations with Telegram-optimized markdown formatting, shortened product names, and clean Amazon URLs Output & Delivery: Formatted recommendations sent to user with categorized options and direct purchase links Error Handling: Admin notifications via separate Telegram channel for workflow monitoring Setup Guide Prerequisites | Requirement | Type | Purpose | |-------------|------|---------| | n8n instance | Essential | Workflow execution platform | | Decodo Account | Essential | Amazon product data scraping | | Telegram Bot Token | Essential | Chat interface for user interactions | | Google Gemini API | Essential | AI-powered product validation and recommendations | | Telegram Account | Optional | Admin error notifications | Installation Steps Import the JSON file to your n8n instance Configure credentials: Decodo API: Sign up at decodo.com → Dashboard → Scraping APIs → Web Advanced → Copy BASIC AUTH TOKEN Telegram Bot: Message @BotFather on Telegram → /newbot → Copy HTTP API token (format: 123456789:ABCdefGHI...) Google Gemini: Obtain API key from Google AI Studio for Gemini 2.5 Flash model Update environment-specific values: Replace YOUR-CHAT-ID in "Notify Admin" node with your Telegram chat ID for error notifications Verify Telegram webhook IDs are properly configured Customize settings: Adjust AI prompt in "Generate Recommendations" node for different output formats Set character limits (default: 2500) for Telegram message length Test execution: Send test message to your Telegram bot: "iPhone 15 Pro" Verify processing status messages appear Confirm recommendations arrive with properly formatted links Customization Options Basic Adjustments: Character Limit**: Modify 2500 in AI prompt to adjust response length (Telegram max: 4096) Advanced Enhancements: Multi-language Support**: Add language detection and translation nodes for international users Price Tracking**: Integrate Google Sheets to log historical prices and trigger alerts on drops Image Support**: Enable Telegram photo messages with product images from scraping results Troubleshooting Common Issues: | Problem | Cause | Solution | |---------|-------|----------| | "No product detected" for valid inputs | AI validation too strict or ambiguous query | Add specific product details (model number, brand) in user input | | Empty recommendations returned | Decodo API rate limit or Amazon blocking | Wait 60 seconds between requests; verify Decodo account status | | Telegram message formatting broken | Special characters in product names | Ensure Telegram markdown mode is set to "Markdown" (legacy) not "MarkdownV2" | Use Case Examples Scenario 1: E-commerce Store Owner Challenge: Needs to quickly assess competitor pricing and product positioning for new inventory decisions without spending hours browsing Amazon Solution: Sends "wireless earbuds" to bot, receives categorized analysis of 20+ products with price ranges ($15-$250), top sellers, and discount opportunities Result: Identifies $35-$50 price gap in market, sources comparable product, achieves 40% profit margin Scenario 2: Smart Shopping Enthusiast Challenge: Wants to buy a laptop backpack but overwhelmed by 200+ Amazon options with varying prices and unclear value propositions Solution: Messages "laptop backpack" to bot, gets AI recommendations sorted by budget ($30), premium ($50+), best value (highest discount + good ratings), and most popular (by sales volume) Result: Purchases "Best Value" recommendation with 35% discount, saves $18 and 45 minutes of research time Created by: Khaisa Studio Category: AI | Productivity | E-commerce | Tags: amazon, telegram, ai, product-research, shopping, automation, gemini Need custom workflows? Contact us Connect with the creator: Portfolio • Workflows • LinkedIn • Medium • Threads
by Robert Breen
This n8n workflow template automatically processes phone interview transcripts using AI to evaluate candidates against specific criteria and saves the results to Google Sheets. Perfect for HR departments, recruitment agencies, or any business conducting phone screenings. What This Workflow Does This automated workflow: Receives phone interview transcripts via webhook Uses OpenAI GPT models to analyze candidate responses against predefined qualification criteria Extracts key information (name, phone, location, qualification status) Automatically saves structured results to a Google Sheet for easy review and follow-up The workflow is specifically designed for driving job interviews but can be easily adapted for any position with custom evaluation criteria. Tools & Services Used N8N** - Workflow automation platform OpenAI API** - AI-powered transcript analysis (GPT-4o-mini) Google Sheets** - Data storage and management Webhook** - Receiving transcript data Prerequisites Before implementing this workflow, you'll need: N8N Instance - Self-hosted or cloud version OpenAI API Account - For AI transcript processing Google Account - For Google Sheets integration Phone Interview System - That can send webhooks (like Vapi.ai) Step-by-Step Setup Instructions Step 1: Set Up OpenAI API Access Visit OpenAI's API platform Create an account or log in Navigate to API Keys section Generate a new API key Copy and securely store your API key Step 2: Create Your Google Sheet Option 1: Use Our Pre-Made Template (Recommended) Copy our template: Driver Interview Results Template Click "File" → "Make a copy" to create your own version Rename it as desired Copy your new sheet's URL - you'll need this for the workflow Option 2: Create From Scratch Go to Google Sheets Create a new spreadsheet Name it "Driver Interview Results" (or your preferred name) Set up the following column headers in row 1: A1: name B1: phone C1: cityState D1: qualifies E1: reasoning Copy the Google Sheet URL - you'll need this for the workflow Step 3: Import and Configure the N8N Workflow Import the Workflow Copy the workflow JSON from the template In your N8N instance, go to Workflows → Import from JSON Paste the JSON and import Configure OpenAI Credentials Click on either "OpenAI Chat Model" node Set up credentials using your OpenAI API key Test the connection to ensure it works Configure Google Sheets Integration Click on the "Save to Google Sheets" node Set up Google Sheets OAuth2 credentials Select your spreadsheet from the dropdown Choose the correct sheet (usually "Sheet1") Update the Webhook Click on the "Webhook" node Note the webhook URL that n8n generates This URL will receive your transcript data Step 4: Customize Evaluation Criteria The workflow includes predefined criteria for a Massachusetts driving job. To customize for your needs: Click on the "Evaluate Candidate" node Modify the system message to include your specific requirements Update the evaluation criteria checklist Adjust the JSON output format if needed Current Evaluation Criteria: Valid Massachusetts driver's license No felony convictions Clean driving record (no recent tickets/accidents) Willing to complete background check Can pass drug test (including marijuana) Available full-time Monday-Friday Lives in Massachusetts Step 5: Connect to Vapi.ai (Phone Interview System) This workflow is specifically designed to work with Vapi.ai's phone interview system. Here's how to connect it: Setting Up the Vapi Integration Copy Your N8N Webhook URL In your n8n workflow, click on the "Webhook" node Copy the webhook URL (it should look like: https://your-n8n-instance.com/webhook-test/351ffe7c-69f2-4657-b593-c848d59205c0) Configure Your Vapi Assistant Log into your Vapi.ai dashboard Create or edit your phone interview assistant In the assistant settings, find the "Server" section Set the Server URL to your n8n webhook URL Set timeout to 20 seconds (as configured in the workflow) Configure Server Messages In your Vapi assistant settings, enable these server messages: end-of-call-report transcript[transcriptType="final"] Set Up the Interview Script Use the provided interview script in your Vapi assistant (found in the workflow's system message) This ensures consistent data collection for the AI evaluation Expected Data Format from Vapi The workflow expects Vapi to send data in this specific format: { "body": { "message": { "artifact": { "transcript": "AI: Hi. Are you interested in driving for Bank of Transport?\nUser: Yes.\nAI: Great. Before we go further..." } } } } Vapi Configuration Checklist ✅ Webhook URL set in Vapi assistant server settings ✅ Server messages enabled: end-of-call-report, transcript[transcriptType="final"] ✅ Interview script configured in assistant ✅ Assistant set to send webhooks on call completion Alternative Phone Systems If you're not using Vapi.ai, you can adapt this workflow for other phone systems by: Modifying the "Edit Fields2" node to extract transcripts from your system's data format Updating the webhook data structure expectations Ensuring your phone system sends the complete interview transcript Step 6: Test the Workflow Test with Sample Data Use the "Execute Workflow" button with test data Verify that data appears correctly in your Google Sheet Check that the AI evaluation logic works as expected End-to-End Testing Send a test webhook with a real transcript Monitor each step of the workflow Confirm the final result is saved to Google Sheets Workflow Node Breakdown Webhook - Receives transcript data from your phone system Edit Fields2 - Extracts the transcript from the incoming data Evaluate Candidate - AI analysis using GPT-4o-mini to assess qualification Convert to JSON - Ensures proper JSON formatting with structured output parser Save to Google Sheets - Automatically logs results to your spreadsheet Customization Options Modify Evaluation Criteria Edit the system prompt in the "Evaluate Candidate" node Add or remove qualification requirements Adjust the scoring logic Change Output Format Modify the JSON schema in the "Structured Output Parser" node Update Google Sheets column mapping accordingly Add Additional Processing Insert nodes for email notifications Add Slack/Discord alerts for qualified candidates Integrate with your CRM or ATS system Troubleshooting Common Issues: OpenAI API Errors**: Check API key validity and billing status Google Sheets Not Updating**: Verify OAuth permissions and sheet access Webhook Not Receiving Data**: Confirm URL and POST format from your phone system AI Evaluation Inconsistencies**: Refine the system prompt with more specific criteria Usage Tips Monitor Token Usage**: OpenAI charges per token, so monitor your usage Regular Review**: Periodically review AI evaluations for accuracy Backup Data**: Export Google Sheets data regularly for backup Privacy Compliance**: Ensure transcript handling complies with local privacy laws Need Help with Implementation? For professional setup, customization, or troubleshooting of this workflow, contact: Robert - Ynteractive Solutions Email**: rbreen@ynteractive.com Website**: www.ynteractive.com LinkedIn**: linkedin.com/in/robert-interactive Specializing in AI-powered workflow automation, business process optimization, and custom integration solutions.
by Rohit Dabra
Jira MCP Server Integration with n8n Overview Transform your Jira project management with the power of AI and automation! This n8n workflow template demonstrates how to create a seamless integration between chat interfaces, AI processing, and Jira Software using MCP (Model Context Protocol) server architecture. What This Workflow Does Chat-Driven Automation**: Trigger Jira operations through simple chat messages AI-Powered Issue Creation**: Automatically generate detailed Jira issues with descriptions and acceptance criteria Complete Jira Management**: Get issue status, changelogs, comments, and perform full CRUD operations Memory Integration**: Maintain context across conversations for smarter automations Zero Manual Entry**: Eliminate repetitive data entry and human errors Key Features ✅ Natural Language Processing: Use Google Gemini to understand and process chat requests ✅ MCP Server Integration: Secure, efficient communication with Jira APIs ✅ Comprehensive Jira Operations: Create, read, update, delete issues and comments ✅ Smart Memory: Context-aware conversations for better automation ✅ Multi-Action Workflow: Handle multiple Jira operations from a single trigger Demo Video 🎥 Watch the Complete Demo: Automate Jira Issue Creation with n8n & AI | MCP Server Integration Prerequisites Before setting up this workflow, ensure you have: n8n instance** (cloud or self-hosted) Jira Software** account with appropriate permissions Google Gemini API** credentials MCP Server** configured and accessible Basic understanding of n8n workflows Setup Guide Step 1: Import the Workflow Copy the workflow JSON from this template In your n8n instance, click Import > From Text Paste the JSON and click Import Step 2: Configure Google Gemini Open the Google Gemini Chat Model node Add your Google Gemini API credentials Configure the model parameters: Model: gemini-pro (recommended) Temperature: 0.7 for balanced creativity Max tokens: As per your requirements Step 3: Set Up MCP Server Connection Configure the MCP Client node: Server URL: Your MCP server endpoint Authentication: Add required credentials Timeout: Set appropriate timeout values Ensure your MCP server supports Jira operations: Issue creation and retrieval Comment management Status updates Changelog access Step 4: Configure Jira Integration Set up Jira credentials in n8n: Go to Credentials > Add Credential Select Jira Software API Add your Jira instance URL, email, and API token Configure each Jira node: Get Issue Status: Set project key and filters Create Issue: Define issue type and required fields Manage Comments: Set permissions and content rules Step 5: Memory Configuration Configure the Simple Memory node: Set memory key for conversation context Define memory retention duration Configure memory scope (user/session level) Step 6: Chat Trigger Setup Configure the When Chat Message Received trigger: Set up webhook URL or chat platform integration Define message filters if needed Test the trigger with sample messages Usage Examples Creating a Jira Issue Chat Input: Can you create an issue in Jira for Login Page with detailed description and acceptance criteria? Expected Output: New Jira issue created with structured description Automatically generated acceptance criteria Proper labeling and categorization Getting Issue Status Chat Input: What's the status of issue PROJ-123? Expected Output: Current issue status Last updated information Assigned user details Managing Comments Chat Input: Add a comment to issue PROJ-123: "Ready for testing in staging environment" Expected Output: Comment added to specified issue Notification sent to relevant team members Customization Options Extending Jira Operations Add more Jira operations (transitions, watchers, attachments) Implement custom field handling Create multi-project workflows AI Enhancement Fine-tune Gemini prompts for better issue descriptions Add custom validation rules Implement approval workflows Integration Expansion Connect to Slack, Discord, or Teams Add email notifications Integrate with time tracking tools Troubleshooting Common Issues MCP Server Connection Failed Verify server URL and credentials Check network connectivity Ensure MCP server is running and accessible Jira API Errors Validate Jira credentials and permissions Check project access rights Verify issue type and field configurations AI Response Issues Review Gemini API quotas and limits Adjust prompt engineering for better results Check model parameters and settings Performance Tips Optimize memory usage for long conversations Implement rate limiting for API calls Use error handling and retry mechanisms Monitor workflow execution times Best Practices Security: Store all credentials securely using n8n's credential system Testing: Test each node individually before running the complete workflow Monitoring: Set up alerts for workflow failures and API limits Documentation: Keep track of custom configurations and modifications Backup: Regular backup of workflow configurations and credentials Happy Automating! 🚀 This workflow template is designed to boost productivity and eliminate manual Jira management tasks. Customize it according to your team's specific needs and processes.
by Trung Tran
Automated AWS IAM Compliance Workflow for MFA Enforcement and Access Key Deactivation > This workflow leverages AWS IAM APIs and n8n automation to ensure strict security compliance by continuously monitoring IAM users for MFA (Multi-Factor Authentication) enforcement. .jpg) Who’s it for This workflow is designed for DevOps, Security, or Cloud Engineers responsible for maintaining IAM security compliance in AWS accounts. It's ideal for teams who want to enforce MFA usage and automatically disable access for non-compliant IAM users. How it works / What it does This automated workflow performs a daily check to detect IAM users without an MFA device and deactivate their access keys. Step-by-step: Daily scheduler: Triggers the workflow once a day. Get many users: Retrieves a list of all IAM users in the account. Get IAM User MFA Devices: Calls AWS API to get MFA device info for each user. Filter out IAM users with MFA: Keeps only users without any MFA device. Send warning message(s): Sends Slack alerts for users who do not have MFA enabled. Get User Access Key(s): Fetches access keys for each non-MFA user. Parse the list of user access key(s): Extracts and flattens key information like AccessKeyId, Status, and UserName. Filter out inactive keys: Keeps only active access keys for further action. Deactivate Access Key(s): Calls AWS API to deactivate each active key for non-MFA users. How to set up Configure AWS credentials in your environment (IAM role or AWS access key with required permissions). Connect Slack via the Slack node for alerting (set channel and credentials). Set the scheduler to your preferred frequency (e.g., daily at 9AM). Adjust any Slack message template or filtering conditions as needed. Requirements IAM user or role credentials with the following AWS IAM permissions: iam:ListUsers iam:ListMFADevices iam:ListAccessKeys iam:UpdateAccessKey Slack credentials (Bot token with chat:write permission). n8n environment with: Slack integration AWS credentials (set via environment or credentials manager) How to customize the workflow Alert threshold**: Instead of immediate deactivation, you can delay action (e.g., alert first, wait 24h, then disable). Change notification channel**: Modify the Slack node to send alerts to a different channel or add email integration. Whitelist exceptions**: Add a Set or IF node to exclude specific usernames (e.g., service accounts). Add audit logging**: Use Google Sheets, Airtable, or a database to log which users were flagged or had access disabled. Extend access checks**: Include console password check (GetLoginProfile) if needed.
by PDF Vector
Overview Transform your accounts payable department with this enterprise-grade invoice processing solution. This workflow automates the entire invoice lifecycle - from document ingestion through payment processing. It handles invoices from multiple sources (Google Drive, email attachments, API submissions), extracts data using AI, validates against purchase orders, routes for appropriate approvals based on amount thresholds, and integrates seamlessly with your ERP system. The solution includes vendor master data management, duplicate invoice detection, real-time spend analytics, and complete audit trails for compliance. What You Can Do This comprehensive workflow creates an intelligent invoice processing pipeline that monitors multiple input channels (Google Drive, email, webhooks) for new invoices and automatically extracts data from PDFs, images, and scanned documents using AI. It validates vendor information against your master database, matches invoices to purchase orders, and detects discrepancies. The workflow implements multi-level approval routing based on invoice amount and department, prevents duplicate payments through intelligent matching algorithms, and integrates with QuickBooks, SAP, or other ERP systems. Additionally, it generates real-time dashboards showing processing metrics and cash flow insights while sending automated reminders for pending approvals. Who It's For Perfect for medium to large businesses, accounting departments, and financial service providers processing more than 100 invoices monthly across multiple vendors. Ideal for organizations that need to enforce approval hierarchies and spending limits, require integration with existing ERP/accounting systems, want to reduce processing time from days to minutes, need audit trails and compliance reporting, and seek to eliminate manual data entry errors and duplicate payments. The Problem It Solves Manual invoice processing creates significant operational challenges including data entry errors (3-5% error rate), processing delays (8-10 days per invoice), duplicate payments (0.1-0.5% of invoices), approval bottlenecks causing late fees, lack of visibility into pending invoices and cash commitments, and compliance issues from missing audit trails. This workflow reduces processing time by 80%, eliminates data entry errors, prevents duplicate payments, and provides complete visibility into your payables process. Setup Instructions Google Drive Setup: Create dedicated folders for invoice intake and configure access permissions PDF Vector Configuration: Set up API credentials with appropriate rate limits for your volume Database Setup: Deploy the provided schema for vendor master and invoice tracking tables Email Integration: Configure IMAP credentials for invoice email monitoring (optional) ERP Connection: Set up API access to your accounting system (QuickBooks, SAP, etc.) Approval Rules: Define approval thresholds and routing rules in the configuration node Notification Setup: Configure Slack/email for approval notifications and alerts Key Features Multi-Channel Invoice Ingestion**: Automatically collect invoices from Google Drive, email attachments, and API uploads Advanced OCR and AI Extraction**: Process any invoice format including handwritten notes and poor quality scans Vendor Master Integration**: Validate and enrich vendor data, maintaining a clean vendor database 3-Way Matching**: Automatically match invoices to purchase orders and goods receipts Dynamic Approval Routing**: Route based on amount, department, vendor, or custom rules Duplicate Detection**: Prevent duplicate payments using fuzzy matching algorithms Real-Time Analytics**: Track KPIs like processing time, approval delays, and early payment discounts Exception Handling**: Intelligent routing of problematic invoices for manual review Audit Trail**: Complete tracking of all actions, approvals, and system modifications Payment Scheduling**: Optimize payment timing to capture discounts and manage cash flow Customization Options This workflow can be customized to add industry-specific extraction fields, implement GL coding rules based on vendor or amount, create department-specific approval workflows, add currency conversion for international invoices, integrate with additional systems (banks, expense management), configure custom dashboards and reporting, set up vendor portals for invoice status inquiries, and implement machine learning for automatic GL coding suggestions. Note: This workflow uses the PDF Vector community node. Make sure to install it from the n8n community nodes collection before using this template.
by Khairul Muhtadin
Decodo Amazon Product Recommender delivers instant, AI-powered shopping recommendations directly through Telegram. Send any product name and receive Amazon product analysis featuring price comparisons, ratings, sales data, and categorized recommendations (budget, premium, best value) in under 40 seconds—eliminating hours of manual research. Why Use This Workflow? Time Savings: Reduce product research from 45+ minutes to under 30 seconds Decision Quality: Compare 20+ products automatically with AI-curated recommendations Zero Manual Work: Complete automation from message input to formatted recommendations Ideal For E-commerce Entrepreneurs:** Quickly research competitor products, pricing strategies, and market trends for inventory decisions Smart Shoppers & Deal Hunters:** Get instant product comparisons with sales volume data and discount tracking before purchasing Product Managers & Researchers:** Analyze Amazon marketplace positioning, customer sentiment, and pricing ranges for competitive intelligence How It Works Trigger: User sends product name via Telegram (e.g., "iPhone 15 Pro Max case") AI Validation: Gemini 2.5 Flash extracts core product keywords and validates input authenticity Data Collection: Decodo API scrapes Amazon search results, extracting prices, ratings, reviews, sales volume, and product URLs Processing: JavaScript node cleans data, removes duplicates, calculates value scores, and categorizes products (top picks, budget, premium, best value, most popular) Intelligence Layer: AI generates personalized recommendations with Telegram-optimized markdown formatting, shortened product names, and clean Amazon URLs Output & Delivery: Formatted recommendations sent to user with categorized options and direct purchase links Error Handling: Admin notifications via separate Telegram channel for workflow monitoring Setup Guide Prerequisites | Requirement | Type | Purpose | |-------------|------|---------| | n8n instance | Essential | Workflow execution platform | | Decodo Account | Essential | Amazon product data scraping | | Telegram Bot Token | Essential | Chat interface for user interactions | | Google Gemini API | Essential | AI-powered product validation and recommendations | | Telegram Account | Optional | Admin error notifications | Installation Steps Import the JSON file to your n8n instance Configure credentials: Decodo API: Sign up at decodo.com → Dashboard → Scraping APIs → Web Advanced → Copy BASIC AUTH TOKEN Telegram Bot: Message @BotFather on Telegram → /newbot → Copy HTTP API token (format: 123456789:ABCdefGHI...) Google Gemini: Obtain API key from Google AI Studio for Gemini 2.5 Flash model Update environment-specific values: Replace YOUR-CHAT-ID in "Notify Admin" node with your Telegram chat ID for error notifications Verify Telegram webhook IDs are properly configured Customize settings: Adjust AI prompt in "Generate Recommendations" node for different output formats Set character limits (default: 2500) for Telegram message length Test execution: Send test message to your Telegram bot: "iPhone 15 Pro" Verify processing status messages appear Confirm recommendations arrive with properly formatted links Customization Options Basic Adjustments: Character Limit**: Modify 2500 in AI prompt to adjust response length (Telegram max: 4096) Advanced Enhancements: Multi-language Support**: Add language detection and translation nodes for international users Price Tracking**: Integrate Google Sheets to log historical prices and trigger alerts on drops Image Support**: Enable Telegram photo messages with product images from scraping results Troubleshooting Common Issues: | Problem | Cause | Solution | |---------|-------|----------| | "No product detected" for valid inputs | AI validation too strict or ambiguous query | Add specific product details (model number, brand) in user input | | Empty recommendations returned | Decodo API rate limit or Amazon blocking | Wait 60 seconds between requests; verify Decodo account status | | Telegram message formatting broken | Special characters in product names | Ensure Telegram markdown mode is set to "Markdown" (legacy) not "MarkdownV2" | Use Case Examples Scenario 1: E-commerce Store Owner Challenge: Needs to quickly assess competitor pricing and product positioning for new inventory decisions without spending hours browsing Amazon Solution: Sends "wireless earbuds" to bot, receives categorized analysis of 20+ products with price ranges ($15-$250), top sellers, and discount opportunities Result: Identifies $35-$50 price gap in market, sources comparable product, achieves 40% profit margin Scenario 2: Smart Shopping Enthusiast Challenge: Wants to buy a laptop backpack but overwhelmed by 200+ Amazon options with varying prices and unclear value propositions Solution: Messages "laptop backpack" to bot, gets AI recommendations sorted by budget ($30), premium ($50+), best value (highest discount + good ratings), and most popular (by sales volume) Result: Purchases "Best Value" recommendation with 35% discount, saves $18 and 45 minutes of research time Created by: Khaisa Studio Category: AI | Productivity | E-commerce | Tags: amazon, telegram, ai, product-research, shopping, automation, gemini Need custom workflows? Contact us Connect with the creator: Portfolio • Workflows • LinkedIn • Medium • Threads
by WeblineIndia
Real-Time WooCommerce Return Surge Detection with Slack Alerts & Airtable Logging This n8n workflow monitors WooCommerce refund activity to detect unusual spikes in product returns at the SKU level. It compares return volumes across rolling 24-hour windows, alerts teams in Slack when defined thresholds are exceeded and logs all detected events into Airtable for tracking and analysis. 🚀 Quick Start – Get This Running Fast Import the workflow into n8n. Connect your WooCommerce API credentials. Configure Slack and Airtable credentials. Set your preferred schedule interval. Activate the workflow and start monitoring returns automatically. What It Does This workflow is designed to automatically detect abnormal return behavior in a WooCommerce store. On every scheduled run, it fetches recent orders and refunds directly from the WooCommerce REST API. Refund records are mapped back to their original orders to accurately identify affected SKUs. Using a rolling time-window comparison, the workflow calculates current versus previous return counts per SKU. It identifies significant increases—either large percentage spikes or unusually high absolute return volumes. This ensures early detection of potential product quality, packaging or fulfillment issues. When a return surge is detected, the workflow sends a structured alert to a Slack channel and stores the alert data in Airtable. This creates a searchable, historical log that supports investigations, trend analysis and operational decision-making. Who’s It For This workflow is ideal for: eCommerce operations teams. Quality assurance and product managers. Customer support leads. Supply chain and fulfillment teams. Store owners running WooCommerce at scale. Requirements to Use This Workflow To use this workflow, you will need: An active WooCommerce store with REST API access. WooCommerce API credentials** (Consumer Key & Secret). An active Slack workspace with permission to post messages. An Airtable base and table for logging alerts. An n8n instance (self-hosted or cloud). How It Works & How To Set Up Workflow Execution Flow Schedule Trigger runs the workflow at a fixed interval. Time Window node defines current and previous 24-hour comparison windows. HTTP Orders fetches recent WooCommerce orders. HTTP Refunds fetches refund records. Orders_Fetch (Code) maps refunds to parent orders and extracts SKU-level data. Refund_details (Code) aggregates returns, compares windows, and calculates increases. IF Node checks surge conditions: ≥100% increase OR ≥25 current returns Set Fields enriches data with status, run date, and cooldown key. Slack Node sends a formatted alert message. Code Node normalizes Slack output into structured fields. Airtable Node stores alert records for future reference. Setup Instructions Replace {your_woocommerce_domain} with your actual store domain. Verify WooCommerce API permissions allow order and refund access. Select the correct Slack channel in the Slack node. Ensure Airtable column names match the workflow mappings. How To Customize Nodes You can easily adapt this workflow by: Changing the schedule frequency in the Schedule Trigger. Adjusting WINDOW_HOURS in the Code nodes. Modifying alert thresholds in the IF node. Customizing the Slack message format. Adding or removing Airtable fields for reporting needs. Add-ons (Optional Enhancements) This workflow can be extended with: Email or Microsoft Teams notifications. Jira or Linear ticket creation. Product auto-pause for extreme return spikes. Dashboard reporting using BI tools. Cooldown logic to prevent repeated alerts per SKU. Use Case Examples Common use cases include: Detecting defective product batches early. Identifying packaging or shipping damage trends. Monitoring supplier quality issues. Supporting refund root-cause analysis. Improving customer satisfaction metrics. There can be many more operational and analytical use cases based on your business needs. Troubleshooting Guide | Issue | Possible Cause | Solution | |------|---------------|----------| | No Slack alerts | Threshold not met | Lower IF condition limits | | Empty SKU values | Missing SKU in WooCommerce | Use product name or ID fallback | | No data in Airtable | Column mismatch | Verify field names and types | | API errors | Invalid credentials | Re-authorize WooCommerce API | | Duplicate alerts | Frequent schedule | Add cooldown or deduplication logic | Need Help? Need assistance setting this up or customizing it for your business? WeblineIndia can help you implement, extend or build similar automation workflows tailored to your operational needs. Whether you want advanced alerting, deeper analytics or cross-system integrations, our team is ready to help you get the most out of n8n automation.