by Avkash Kakdiya
How it works This workflow automatically collects a list of companies from Google Sheets, searches for their competitors using SerpAPI, extracts up to 10 relevant competitor names with source links, and logs the results into both Google Sheets and Airtable. It runs on a set schedule, cleans and formats the company list, processes each entry individually, checks if competitors exist, and separates results into successful and “no competitors found” lists for organized tracking. Step-by-step 1. Trigger & Input Auto Run (Scheduled) – Executes every day at the set time (e.g., 9 AM). Read Companies Sheet – Pulls the list of companies from a Google Sheet (List column). Clean & Format Company List – Removes empty rows, trims names, and attaches row numbers for tracking. Loop Over Companies – Processes each company one at a time in batches. 2. Competitor Search Search Company Competitors (SerpAPI) – Sends a query like "{Company} competitors" to SerpAPI, retrieving structured search results in JSON format. 3. Data Extraction & Validation Extract Competitor Data from Search – Parses SerpAPI results to: Identify the company name Extract up to 10 competitor names Capture the top source URL Count total search results Has Competitors? – Checks if any competitors were found: Yes → Proceeds to logging No → Logs in “no results” list 4. Logging Results Log to Result Sheet – Appends or updates competitor data into the results Google Sheet. Log Companies Without Results – Records companies with zero competitors found in a separate section of the results sheet. Sync to Airtable – Pushes all results (successful or not) into Airtable for unified storage and analysis. Benefits Automated Competitor Research – Eliminates the need for manual Google searching. Daily Insights – Runs automatically at your chosen schedule. Clean Data Output – Stores structured competitor lists with sources for easy review. Multi-Destination Sync – Saves to both Google Sheets and Airtable for flexibility. Scalable & Hands-Free – Handles hundreds of companies without extra effort.
by Oussama
This n8n template creates an intelligent expense tracking system 🤖 that processes text, voice, and receipt images through Telegram. The assistant automatically categorizes expenses, handles currency conversions 🌍, and maintains financial records in Google Sheets while providing smart spending insights 💡. Use Cases: 🗣️ Personal expense tracking via Telegram chat 🧾 Receipt scanning and data extraction 💱 Multi-currency expense management 📂 Automated financial categorization 🎙️ Voice-to-expense logging 📊 Daily/weekly/monthly spending analysis How it works: Multi-Input Processing: Telegram trigger captures text messages, voice notes, and receipt images. Content Analysis: A Switch node routes different input types (text, audio, images) to appropriate processors. Voice Processing: ElevenLabs converts voice messages to text for expense extraction. Receipt OCR: Google Gemini analyzes receipt images to extract amounts and descriptions. Expense Classification: An LLM determines if the input is an expense or a general query. Expense Parsing: For multiple expenses, the AI splits and normalizes each item. Currency Conversion: An exchange rate API converts foreign currencies to USD. Smart Categorization: The AI agent assigns expenses to predefined categories with emojis. Data Storage: Google Sheets stores all expense records with automatic totals. Intelligent Responses: The agent provides spending summaries, alerts, and financial insights. Requirements: 🌐 Telegram Bot API access 🤖 OpenAI, Gemini, or any other AI model 🗣️ ElevenLabs API for voice processing 📝 Google Sheets API access 💹 Exchange rate API access Good to know: ⚠️ Daily spending alerts trigger when expenses exceed 100 USD. 🏷️ Supports 12 predefined expense categories with emoji indicators. 🔄 Automatic currency detection and conversion to USD. 🎤 Voice messages are processed through speech-to-text. 📸 Receipt images are analyzed using computer vision. Customizing this workflow: ✏️ Modify expense categories in the system prompt. 📈 Adjust spending alert thresholds. 💵 Change the base currency from USD to your preferred currency. ✅ Add additional expense validation rules. 🔗 Integrate with other financial platforms.
by IranServer.com
Automate IP geolocation and HTTP port scanning with Google Sheets trigger This n8n template automatically enriches IP addresses with geolocation data and performs HTTP port scanning when new IPs are added to a Google Sheets document. Perfect for network monitoring, security research, or maintaining an IP intelligence database. Who's it for Network administrators, security researchers, and IT professionals who need to: Track IP geolocation information automatically Monitor HTTP service availability across multiple ports Maintain centralized IP intelligence in spreadsheets Automate repetitive network reconnaissance tasks How it works The workflow triggers whenever a new row containing an IP address is added to your Google Sheet. It then: Fetches geolocation data using the ip-api.com service to get country, city, coordinates, ISP, and organization information Updates the spreadsheet with the geolocation details Scans common HTTP ports (80, 443, 8080, 8000, 3000) to check service availability Records port status back to the same spreadsheet row, showing which services are accessible The workflow handles both successful connections and various error conditions, providing a comprehensive view of each IP's network profile. Requirements Google Sheets API access** - for reading triggers and updating data Google Sheets document** with at least an "IP" column header How to set up Create a Google Sheet with columns: IP, Country, City, Lat, Lon, ISP, Org, Port_80, Port_443, Port_8000, Port_8080, Port_3000 Configure Google Sheets credentials in both the trigger and update nodes Update the document ID in the Google Sheets Trigger and both Update nodes to point to your spreadsheet Test the workflow by adding an IP address to your sheet and verifying the automation runs How to customize the workflow Modify port list**: Edit the "Edit Fields" node to scan different ports by changing the ports array Add more geolocation fields**: The ip-api.com response includes additional fields like timezone, zip code, and AS number Change trigger frequency**: Adjust the polling interval in the Google Sheets Trigger for faster or slower monitoring Add notifications**: Insert Slack, email, or webhook nodes to alert when specific conditions are detected Filter results**: Add IF nodes to process only certain IP ranges or geolocation criteria
by Rahi
WABA Message Journey Flow Documentation This document outlines the automated workflow for sending WhatsApp messages to contacts, triggered hourly and managed through disposition and message count logic. The workflow is designed to ensure contacts receive messages based on their status and the frequency of previous interactions. Trigger and Data Retrieval The journey begins with a time-based trigger and data retrieval from the Supabase contacts table. Trigger: A "Schedule Trigger3" node initiates the workflow every hour. This ensures that the system regularly checks for contacts requiring messages. Get Contacts: The "Get many rows1" node (Supabase) then retrieves all relevant contact data from the contacts_ampere table in Supabase. This brings in contact details such as name, phone, Disposition, Count, and last_message_sent. Disposition-Based Segregation After retrieving the contacts, the workflow segregates them based on their Disposition status. Disposition Switch: The "Disposition Switch" node acts as the primary routing mechanism. It evaluates the Disposition field of each contact and directs them to different branches of the workflow based on predefined categories. Case 0: new_lead: Contacts with the disposition new_lead are routed to the "Count Switch" for further processing. Cases 1-4: The workflow also includes branches for test_ride, Booking, walk_in, and Sale dispositions, though the detailed logic for these branches is not fully laid out in the provided JSON beyond the switch nodes ("Switch2", "Switch3", "Switch4", "Switch5"). The documentation focuses on the new_lead disposition's detailed flow, which can be replicated for others. Message Count Logic (for new_lead Disposition) For contacts identified as new_lead, the workflow uses a "Count Switch" to determine which message in the sequence should be sent. Count Switch: This node evaluates the Count field for each new_lead contact. This Count likely represents the number of messages already sent to the contact within this specific journey. Count = 0: Directs to "Loop Over Items1" (first message in sequence). Count = 1: Directs to "Loop Over Items2" (second message in sequence). Count = 2: Directs to "Loop Over Items3" (third message in sequence). Count = 3: Directs to "Loop Over Items4" (fourth message in sequence). Looping and Interval Check Each "Loop Over Items" node processes contacts in batches and incorporates an "If Interval" check (except for Loop Over Items1). Loop Over Items (e.g., "Loop Over Items1", "Loop Over Items2", "Loop Over Items3", "Loop Over Items4"): These nodes iterate through the contacts received from the "Count Switch" output. Interval Logic: "If Interval" (for Count = 1 from "Loop Over Items2"): Checks if the interval is greater than or equal to 4. This interval value is handled by a separate Supabase cron job, which updates it every minute based on Current time - last api hit time in hours. "If Interval1" (for Count = 2 from "Loop Over Items3"): Checks if the interval is exactly 24 hours. "If2" (for Count = 3 from "Loop Over Items4"): Checks if the interval is exactly 24 hours. Sending WhatsApp Messages If a contact passes the interval check (or immediately for Count = 0), a WhatsApp message is sent using the Gallabox API. HTTP Request Nodes (e.g., "new_lead_0", "new_lead_", "new_lead_3", "new_lead_2"): These nodes are responsible for sending the actual WhatsApp messages via the Gallabox API. They are configured with: Method: POST URL: https://server.gallabox.com/devapi/messages/whatsapp Authentication: apiKey and apiSecret are used in the headers. Body: Contains channelId, channelType (whatsapp), and recipient (including name and phone). WhatsApp Message Content: Includes type: "template" and templateName (e.g., testing_rahi, wu_2, testing_rahi_1). The bodyValues dynamically insert the contact's name and other details. Some messages also include buttonValues for quick replies (e.g., "Show me Brochure"). Logging and Updating Contact Status After a message is sent (or attempted), the workflow logs the interaction and updates the contact's record. Create Logs (e.g., "Create Logs", "Create Logs1", "Create Logs2", "Create Logs3"): These Supabase nodes record details of the message send attempt into the logs_nurture_ampere table. This includes: message_id (from the Gallabox API response body) phone and name of the contact disposition and mes_count (which is Count + 1 from the contacts table) last_sent (timestamp from Gallabox API response headers) status_code and status_message (from Gallabox API response or error). These nodes are configured to "continueRegularOutput" on error, meaning the workflow will attempt to proceed even if logging fails. Status Code Check (e.g., "If StatusCode", "If StatusCode 202", "If StatusCode 203", "If StatusCode 204"): Immediately after attempting to create a log, an "If" node checks if the status_code from the message send attempt is "202" (indicating acceptance by the messaging service). Update Contact Row (e.g., "Update a row1", "Update a row2", "Update a row3", "Update a row4"): If the status code is 202, these Supabase nodes update the contacts_ampere table for the specific contact. The Count for the contact is incremented by 1 (Count + 1). The last_message_sent field is updated with the date from the Gallabox API response headers. These nodes are also configured to "continueRegularOutput" on error. This structured flow ensures that contacts are nurtured through a sequence of WhatsApp messages, with each interaction logged and the contact's status updated for future reference and continuation of the journey.
by Joseph LePage
n8n Creators Leaderboard Workflow Why Use This Workflow? The n8n Creators Leaderboard Workflow is a powerful tool for analyzing and presenting detailed statistics about workflow creators and their contributions within the n8n community. It provides users with actionable insights into popular workflows, community trends, and top contributors, all while automating the process of data retrieval and report generation. Benefits Discover Popular Workflows**: Identify workflows with the most unique visitors and inserters (weekly and monthly). Understand Community Trends**: Gain insights into what workflows are resonating with the community. Recognize Top Contributors**: Highlight impactful creators to foster collaboration and inspiration. Save Time with Automation**: Automates data fetching, processing, and reporting for efficiency. Use Cases For Workflow Creators**: Track performance metrics of your workflows to optimize them for better engagement. For Community Managers**: Identify trends and recognize top contributors to improve community resources. For New Users**: Explore popular workflows as inspiration for building your own automations. How It Works This workflow aggregates data from GitHub repositories containing statistics about workflow creators and their templates. It processes this data, filters it based on user input, and generates a detailed Markdown report using an AI agent. Key Features Data Aggregation: Fetches creator and workflow statistics from GitHub JSON files. Custom Filtering: Focuses on specific creators based on a username provided via chat. AI-Powered Reports: Generates comprehensive Markdown reports with summaries, tables, and insights. Output Flexibility: Saves reports locally with timestamps for easy access. Data Retrieval & Processing Creators Data**: Retrieved via an HTTP Request node from a JSON file containing aggregated statistics about creators. Workflows Data**: Pulled from another JSON file with workflow metrics like visitor counts and inserter statistics. Data Merging**: Combines creator and workflow data by matching usernames to provide enriched statistics. Report Generation The AI agent generates a Markdown report that includes: A summary of the creator’s contributions. A table of workflows with key metrics (e.g., unique visitors, inserters). Insights into trends or community feedback. The report is saved locally as a file with a timestamp for tracking purposes. Quick Start Guide Prerequisites Ensure your n8n instance is running. Verify that the GitHub base URL and file variables are correctly set in the Global Variables node. Confirm that your OpenAI credentials are configured for the AI Agent node. How to Start Activate the Workflow: Make sure the workflow is active in your n8n environment. Trigger via Chat: Use the Chat Trigger node to initiate the workflow by sending a message like: show me stats for username [desired_username] Replace [desired_username] with the username you want to analyze. Processing & Report Generation: The workflow fetches data, processes it, and generates a Markdown report. View Output: The final report is saved locally as a file (with a timestamp), which you can review to explore leaderboard insights.
by Rahul Joshi
Description Automatically detect customer churn risks from Zendesk tickets, log them into Google Sheets for tracking, and send instant Slack alerts to your customer success team. This workflow helps you spot unhappy customers early and take proactive action to reduce churn. 🚨📊💬 What This Template Does Fetches Zendesk tickets daily on schedule (8:00 PM). ⏰ Processes and formats ticket data into clean JSON (priority, age, urgency). 🧠 Identifies churn risks based on negative satisfaction ratings. ⚠️ Logs churn risk tickets into Google Sheets for analysis and reporting. 📈 Sends formatted Slack alerts with ticket details to the CS team channel. 📢 Key Benefits Detects unhappy customers before they churn. 🚨 Centralized churn tracking for reporting and team reviews. 🧾 Proactive alerts to reduce response delays. ⏱️ Clean, structured ticket data for analytics and filtering. 🔄 Strengthens customer success strategy with real-time visibility. 🌐 Features Schedule Trigger – Runs every weekday at 8:00 PM. 🗓️ Zendesk Integration – Fetches all tickets automatically. 🎫 Smart Data Processing – Adds ticket age, urgency, and priority mapping. 🧮 Churn Risk Filter – Flags tickets with negative satisfaction scores. 🚩 Google Sheets Logging – Saves churn risk details with metadata. 📊 Slack Alerts – Sends formatted messages with ID, subject, rating, and action steps. 💬 Requirements n8n instance (cloud or self-hosted). Zendesk API credentials with ticket read access. Google Sheets OAuth2 credentials with write permissions. Slack Bot API credentials with channel posting permissions. Pre-configured Google Sheet for churn risk logging. Target Audience Customer Success teams monitoring churn risk. 👩💻 SaaS companies tracking customer health. 🚀 Support managers who want proactive churn alerts. 🛠️ SMBs improving retention through automation. 🏢 Remote CS teams needing instant notifications. 🌐 Step-by-Step Setup Instructions Connect your Zendesk, Google Sheets, and Slack credentials in n8n. 🔑 Update the Schedule Trigger (default: daily at 8:00 PM) if needed. ⏰ Replace the Google Sheet ID with your churn risk tracking sheet. 📊 Confirm the Slack channel ID for alerts (default: zendesk-churn-alerts). 💬 Adjust churn filter logic (default: satisfaction_score = "bad"). 🎯 Run a test to fetch Zendesk tickets and validate Sheets + Slack outputs. ✅
by Growth AI
Google Ads automated reporting to spreadsheets with Airtable Who's it for Digital marketing agencies, PPC managers, and marketing teams who manage multiple Google Ads accounts and need automated monthly performance reporting organized by campaign types and conversion metrics. What it does This workflow automatically retrieves Google Ads performance data from multiple client accounts and populates organized spreadsheets with campaign metrics. It differentiates between e-commerce (conversion value) and lead generation (conversion count) campaigns, then organizes data by advertising channel (Performance Max, Search, Display, etc.) with monthly tracking for budget and performance analysis. How it works The workflow follows an automated data collection and reporting process: Account Retrieval: Fetches client information from Airtable (project names, Google Ads IDs, campaign types) Active Filter: Processes only accounts marked as "Actif" for budget reporting Campaign Classification: Routes accounts through e-commerce or lead generation workflows based on "Typologie ADS" Google Ads Queries: Executes different API calls depending on campaign type (conversion value vs. conversion count) Data Processing: Organizes metrics by advertising channel (Performance Max, Search, Display, Video, Shopping, Demand Gen) Dynamic Spreadsheet Updates: Automatically fills the correct monthly column in client spreadsheets Sequential Processing: Handles multiple accounts with wait periods to avoid API rate limits Requirements Airtable account with client database Google Ads API access with developer token Google Sheets API access Client-specific spreadsheet templates (provided) How to set up Step 1: Prepare your reporting template Copy the Google Sheets reporting template Create individual copies for each client Ensure proper column structure (months B-M for January-December) Link template URLs in your Airtable database Step 2: Configure your Airtable database Set up the following fields in your Airtable: Project names: Client project identifiers ID GADS: Google Ads customer IDs Typologie ADS: Campaign classification ("Ecommerce" or "Lead") Status - Prévisionnel budgétaire: Account status ("Actif" for active accounts) Automation budget: URLs to client-specific reporting spreadsheets Step 3: Set up API credentials Configure the following authentication: Airtable Personal Access Token: For client database access Google Ads OAuth2: For advertising data retrieval Google Sheets OAuth2: For spreadsheet updates Developer Token: Required for Google Ads API access Login Customer ID: Manager account identifier Step 4: Configure Google Ads API settings Update the HTTP request nodes with your credentials: Developer Token: Replace "[Your token]" with your actual developer token Login Customer ID: Replace "[Your customer id]" with your manager account ID API Version: Currently using v18 (update as needed) Step 5: Set up scheduling Default schedule: Runs on the 3rd of each month at 5 AM Cron expression: 0 5 3 * * Recommended timing: Early month execution for complete previous month data Processing delay: 1-minute waits between accounts to respect API limits How to customize the workflow Campaign type customization E-commerce campaigns: Tracks: Cost and conversion value metrics Query: metrics.conversions_value for revenue tracking Use case: Online stores, retail businesses Lead generation campaigns: Tracks: Cost and conversion count metrics Query: metrics.conversions for lead quantity Use case: Service businesses, B2B companies Advertising channel expansion Current channels tracked: Performance Max: Automated campaign type Search: Text ads on search results Display: Visual ads on partner sites Video: YouTube and video partner ads Shopping: Product listing ads Demand Gen: Audience-focused campaigns Add new channels by modifying the data processing code nodes. Reporting period adjustment Current setting: Last month data (DURING LAST_MONTH) Alternative periods: Last 30 days, specific date ranges, quarterly reports Custom timeframes: Modify the Google Ads query date parameters Multi-account management Sequential processing: Handles multiple accounts automatically Error handling: Continues processing if individual accounts fail Rate limiting: Built-in waits prevent API quota issues Batch size: No limit on number of accounts processed Data organization features Dynamic monthly columns Automatic detection: Determines previous month column (B-M) Column mapping: January=B, February=C, ..., December=M Data placement: Updates correct month automatically Multi-year support: Handles year transitions seamlessly Campaign performance breakdown Each account populates 10 rows of data: Performance Max Cost (Row 2) Performance Max Conversions/Value (Row 3) Demand Gen Cost (Row 4) Demand Gen Conversions/Value (Row 5) Search Cost (Row 6) Search Conversions/Value (Row 7) Video Cost (Row 8) Video Conversions/Value (Row 9) Shopping Cost (Row 10) Shopping Conversions/Value (Row 11) Data processing logic Cost conversion: Automatically converts micros to euros (÷1,000,000) Precision rounding: Rounds to 2 decimal places for clean presentation Zero handling: Shows 0 for campaign types with no activity Data validation: Handles missing or null values gracefully Results interpretation Monthly performance tracking Historical data: Year-over-year comparison across all channels Channel performance: Identify best-performing advertising types Budget allocation: Data-driven decisions for campaign investments Trend analysis: Month-over-month growth or decline patterns Account-level insights Multi-client view: Consolidated reporting across all managed accounts Campaign diversity: Understanding which channels clients use most Performance benchmarks: Compare similar account types and industries Resource allocation: Focus on high-performing accounts and channels Use cases Agency reporting automation Client dashboards: Automated population of monthly performance reports Budget planning: Historical data for next month's budget recommendations Performance reviews: Ready-to-present data for client meetings Trend identification: Spot patterns across multiple client accounts Internal performance tracking Team productivity: Track account management efficiency Campaign optimization: Identify underperforming channels for improvement Growth analysis: Monitor client account growth and expansion Forecasting: Use historical data for future performance predictions Strategic planning Budget allocation: Data-driven distribution across advertising channels Channel strategy: Determine which campaign types to emphasize Client retention: Proactive identification of declining accounts New business: Performance data to support proposals and pitches Workflow limitations Monthly execution: Designed for monthly reporting (not real-time) API dependencies: Requires stable Google Ads and Sheets API access Rate limiting: Sequential processing prevents parallel account handling Template dependency: Requires specific spreadsheet structure for proper data placement Previous month focus: Optimized for completed month data (run early in new month) Manual credential setup: Requires individual configuration of API tokens and customer IDs
by Alexandra Spalato
Short Description This LinkedIn automation workflow monitors post comments for specific trigger words and automatically sends direct messages with lead magnets to engaged users. The system checks connection status, handles non-connected users with connection requests, and prevents duplicate outreach by tracking all interactions in a database. Key Features Comment Monitoring**: Scans LinkedIn post comments for customizable trigger words Connection Status Check**: Determines if users are 1st-degree connections Automated DMs**: Sends personalized messages with lead magnet links to connected users Connection Requests**: Asks non-connected users to connect via comment replies Duplicate Prevention**: Tracks interactions in NocoDB to avoid repeat messages Message Rotation**: Uses different comment reply variations for authenticity Batch Processing**: Handles multiple comments with built-in delays Who This Workflow Is For Content creators looking to convert post engagement into leads Coaches and consultants sharing valuable LinkedIn content Anyone wanting to automate lead capture from LinkedIn posts How It Works Setup: Configure post ID, trigger word, and lead magnet link via form Comment Extraction: Retrieves all comments from the specified post using Unipile Trigger Detection: Filters comments containing the specified trigger word Connection Check: Determines if commenters are 1st-degree connections Smart Routing: Connected users receive DMs, others get connection requests Database Logging: Records all interactions to prevent duplicates Setup Requirements Required Credentials Unipile API Key**: For LinkedIn API access NocoDB API Token**: For database tracking Database Structure **Table: leads linkedin_id: LinkedIn user ID name: User's full name headline: LinkedIn headline url: Profile URL date: Interaction date posts_id: Post reference connection_status: Network distance dm_status: Interaction type (sent/connection request) Customization Options Message Templates**: Modify DM and connection request messages Trigger Words**: Change the words that activate the workflow Timing**: Adjust delays between messages (8-12 seconds default) Reply Variations**: Add more comment reply options for authenticity Installation Instructions Import the workflow into your n8n instance Set up NocoDB database with required table structure Configure Unipile and NocoDB credentials Set environment variables for Unipile root URL and LinkedIn account ID Test with a sample post before full use
by Oneclick AI Squad
This automated n8n workflow monitors API uptime by periodically checking API availability and sending instant WhatsApp alerts if any service goes down. It retrieves API details from a Google Sheet and includes retry logic for failed requests. Good to Know Checks API status every 15 minutes Integrates with Google Sheets for API list management Implements a retry mechanism with up to 4 attempts Sends WhatsApp alerts for downtime Supports customizable API request configurations How It Works Schedule Trigger** - Triggers every 15 minutes Read API List** - Fetches all API URLs from a Google Sheet Process Each API1** - Loops through each API entry Init Retry Counter** - Initializes retryCount = 0 Test API** - Sends the first request to the API Check Response** - Checks if a valid response was received If No Response** - Branches into retry flow if down Wait 10 Min → Increment Retry → Retry API → Check Retry Response** - Wait and retry API call once If Still No Response** - Verifies if retry also failed If Still No Retry > 4** - Checks if retry limit is reached (≥ 4) Format Down Alert** - Formats the WhatsApp alert with API details Send WhatsApp Alert** - Sends API down alert to the configured number Continue Next API** - Moves to the next API in the list How to Use Import workflow into n8n Configure Google Sheets API for API list access Set up WhatsApp API for alerts Define API details in Google Sheet Test with sample APIs and verify alerts Adjust retry limits or schedule as needed Requirements Access to Google Sheets API WhatsApp API configuration Scheduled trigger setup in n8n Sheet Structure | Sheet Column | Example Data | | -------------------- | ------------------------------------------------------------ | | name | Timeout Test | | method | GET | | url | https://httpbin.org/delay/15 | | headers | {"Content-Type": "application/json"} | | body | {"key": "value"} | | expectedField | status | | expectedValue | success | | expectedStatusCode | 200 | Customizing This Workflow Modify trigger interval Adjust retry limits or wait times Customize WhatsApp alert format Add additional API headers or body data Integrate with other notification services
by Trung Tran
Chat-Based AWS Lambda Manager with Automated Audit Logging (GPT-4.1 mini + Google Sheet) > This workflow provides a chat-based AI agent to manage AWS Lambda functions. It allows users to list, invoke, get details, and delete Lambda functions, while automatically recording every action into Google Sheets for audit and compliance tracking. Who’s it for Cloud engineers and DevOps teams managing AWS Lambda functions. Developers who want a simple chat interface to perform Lambda operations. Compliance and operations teams needing automatic audit logs of AWS actions. How it works / What it does A chat message triggers the AWS Lambda Manager Agent. The agent interprets user intent and calls one of the available tools: Invoke Lambda Function: Runs a Lambda function with given payload. List Lambda Functions: Shows all functions in the account. Get Lambda Function: Retrieves details/configuration of a function. Delete a Function: Removes a Lambda function permanently. After each action, the agent calls Audit Logs (Google Sheets) to record the operation type, function name, timestamp, and outcome. The agent confirms destructive actions (like delete) before execution. How to set up Add a Chat Trigger node to start the workflow when a user sends a message. Connect it to the AWS Lambda Manager Agent node. Configure the agent with the provided system prompt to enforce rules and logging. Link the agent to the following tool nodes: Invoke Lambda Function List Lambda Functions Get Lambda Function Delete a Function Audit Logs (Google Sheets with appendOrUpdate enabled) Deploy the workflow and test it with sample chat commands like “list functions” or “invoke testFunction”. Requirements AWS account with IAM credentials that have lambda:ListFunctions, lambda:InvokeFunction, lambda:GetFunction, and lambda:DeleteFunction permissions. Google Sheets API connected for storing audit logs. Proper region and function names configured when invoking or deleting. n8n instance or automation platform that supports agent + tool integration. How to customize the workflow Add new tools**: Extend with more AWS Lambda operations like Update Function Code or Publish Version. Enhance logging**: Include user ID, request payload, or execution results in Audit Logs. Access control**: Restrict delete actions to admins by adding role-based logic. Multi-cloud support**: Extend the agent to handle Azure/AWS/GCP serverless functions in one workflow. Custom responses**: Modify agent prompt to tailor tone (developer-friendly vs. business-friendly).
by Raghvendra dixit
Description This workflow intelligently scans your inbox, detects whether an email is marketing or genuine, and takes the right action automatically. Marketing Emails : Deleted instantly and logged in Google Sheets for tracking. Non-Marketing Emails : Receive a customized, polite reply crafted using AI. Tracking : Every action (delete/reply) is recorded for auditing and reference. Accounts & Tools n8n instance (self-hosted or cloud). Google account with: Gmail API access (for reading, deleting, and replying). Google Sheets API access (for logging deleted/replied emails). IMP/SMTP credentials (if using IMAP trigger instead of Gmail API). Google Gemini (PaLM) API key to classify emails and generate replies. Setup instructions Create a n8N account on cloud or install it locally. follow the quick start guide this Define your trigger point for your workflow as how or when this needs to run. Currently IMAP has been used to detect if any email is received and if so, trigger the workflow Now, we need to setup the google account which allows our workflow to read emails. Follow this guideline to setup gmail account Next step is to add an AI tool which is google gemini here. To set up and use, see this guideline Since AI response is in text, we need a parser tool to read a specific value from text Setup a categorization tool like this Next is to send or delete email and for this, an existing gmail setup is going to work In the last, we need to set a connection for sheet to keep the logs. Adding any sheet to workflow can be seen as google sheet integration How it work Once any emails is received, IMAP detects and starts the workflow. Now, email is passed to AI model to see if this email is a marketing email or not. Also, is its not a marketing email, it generates a tailored response. Currently, sender, subject and body of email is being scanned and marked as marketing based on model's feedback. Since AI response is in text format, using a formattor to parse it Next step is to read its category as if it is a marketing email Based on email type, there are 2 steps: delete email if it is a marketing email Read the response from previos node and send that as reply Last step is track this activity as which emails is deleted or replied. In terms of structure of sheet, it has 2 tabs deleted emails & replied emails and both have 2 columns Email ID subject Future Use it to categories emails for wider range like job applications, bills, customer supprt and tailor replies for each categories seperately Logging can done in wider sources like databases etc In case if we are logging on sheet, a further enhancements like follow up emails etc can be done
by Vadym Nahornyi
> ⚠️ Multi-language Slack Error Notifier Track errors like a pro — this prebuilt Slack alert flow notifies you instantly when any workflow fails. ✅ No coding needed ✅ Works with any workflow via Error Workflow setting ✅ Step-by-step setup guides in: 🇬🇧 English 🇪🇸 Español 🇩🇪 Deutsch 🇫🇷 Français 🇷🇺 Русский Just plug it in, follow the quick setup, and never miss a failure again.