by Nick Saraev
AI LinkedIn Outreach Automation with Apollo, OpenAI & PhantomBuster Categories:* Sales Automation Lead Generation AI Personalization This workflow creates a complete LinkedIn outreach automation system that generates targeted lead lists from Apollo using natural language, enriches profiles with AI-personalized icebreakers, and automatically sends connection requests through PhantomBuster. Built by someone who's made over $1 million with AI automation, this system demonstrates the real-world approach to building profitable automation workflows. Benefits* Natural Language Lead Targeting - Describe your ideal prospects in plain English and automatically generate Apollo search URLs AI-Powered Personalization - Creates custom icebreakers based on LinkedIn profile data, employment history, and professional background Complete Outreach Pipeline - From lead discovery to personalized connection requests, fully automated end-to-end Smart Data Management - Automatically tracks all prospects in Google Sheets with deduplication and status tracking Cost-Effective Scraping - Uses Apify to extract Apollo data without expensive subscription costs Scalable Architecture - Processes hundreds of leads while respecting LinkedIn's connection limits How It Works* Natural Language Lead Generation: Form input accepts audience descriptions in plain English AI converts descriptions into properly formatted Apollo search URLs Automatically includes location, company size, job titles, and keyword filters Apollo Data Extraction: Uses Apify actor to scrape targeted lead lists from Apollo Extracts LinkedIn URLs, email addresses, employment history, and profile data Processes 500+ leads per run with detailed professional information AI Personalization Engine: Analyzes LinkedIn profile data including job history and company information Generates personalized icebreakers using proven connection request templates Creates human-like messages that reference specific career details and achievements Google Sheets Integration: Automatically stores all lead data in organized spreadsheet format Tracks prospect information, contact details, and generated icebreakers Provides easy data management and campaign tracking PhantomBuster Automation: Connects to PhantomBuster API to trigger LinkedIn connection campaigns Sends personalized connection requests with custom icebreakers Respects LinkedIn's daily limits and mimics human behavior patterns Business Use Cases* Sales Teams - Automate prospecting for B2B outreach campaigns Agencies - Scale client acquisition through targeted LinkedIn outreach Recruiters - Find and connect with qualified candidates efficiently Entrepreneurs - Build professional networks in specific industries Business Development - Generate qualified leads for partnership opportunities Revenue Potential This system can replace expensive LinkedIn outreach tools that cost $200-500/month. Users typically see: 400% improvement in response rates through personalization 10x faster lead generation compared to manual prospecting Ability to process 500+ leads per hour vs. 10-20 manually Difficulty Level: Intermediate Estimated Build Time: 1-2 hours Monthly Operating Cost: ~$50 (Apollo + PhantomBuster + AI APIs) Watch My Complete 1-Hour Build* Want to see exactly how I built this system from scratch? I walk through the entire development process live, including all the debugging, API integrations, and real-world testing that goes into building profitable automation systems. 🎥 See My Live Build Process: "Build This Automated AI LinkedIn DM System in 1 Hour (N8N)" This comprehensive tutorial shows my actual development approach - including the detours, problem-solving, and iterative testing that real automation building involves. Required Google Sheets Setup* Create a Google Sheet with these exact column headers: Essential Lead Columns: id - Unique prospect identifier first_name - Contact's first name last_name - Contact's last name name - Full name linkedin_url - LinkedIn profile URL title - Current job title email_status - Email verification status photo_url - Profile photo URL icebreaker - AI-generated personalized message Setup Instructions: Create Google Sheet with these headers in row 1 Connect Google Sheets OAuth in n8n Update the document ID in the "Add to Google Sheet" node PhantomBuster will read from this sheet for automated outreach Set Up Steps* Apollo & Apify Configuration: Set up Apify account and obtain API credentials Configure Apollo scraper actor with proper parameters Test lead extraction with sample audience descriptions AI Personalization Setup: Configure OpenAI API for natural language processing and personalization Set up prompt templates for audience targeting and icebreaker generation Test personalization quality with sample LinkedIn profiles Google Sheets Integration: Create lead tracking spreadsheet with proper column structure Configure Google Sheets API credentials and permissions Set up data mapping for automatic lead storage PhantomBuster Connection: Set up PhantomBuster account and LinkedIn connection Configure LinkedIn auto-connect agent with custom message templates Connect API for automated campaign triggering Form and Workflow Setup: Configure form trigger for audience input collection Set up data flow between all components Add proper error handling and rate limiting Testing and Optimization: Start with small batches (5-10 connections daily) Monitor LinkedIn account health and response rates Optimize icebreaker templates based on performance data Important Compliance Notes* LinkedIn Limits: Respect 100 connection requests per week limit Account Safety: Use PhantomBuster's human-like behavior patterns Message Quality: Regularly update templates to avoid automation detection Response Management: Monitor and respond to replies within 24 hours Advanced Extensions* This system can be enhanced with: Multi-channel Outreach: Add email sequences for comprehensive campaigns A/B Testing: Test different icebreaker templates automatically CRM Integration: Connect to Salesforce, HubSpot, or other sales systems Response Tracking: Monitor reply rates and optimize messaging Explore My Channel* For more advanced automation systems that generate real business results, check out my YouTube channel where I share the exact strategies I've used to make over $1 million with AI automation.
by shepard
Overview This workflow leverages the LangChain code node to implement a fully customizable conversational agent. Ideal for users who need granular control over their agent's prompts while reducing unnecessary token consumption from reserved tool-calling functionality (compared to n8n's built-in Conversation Agent). Setup Instructions Configure Gemini Credentials: Set up your Google Gemini API key (Get API key here if needed). Alternatively, you may use other AI provider nodes. Interaction Methods: Test directly in the workflow editor using the "Chat" button Activate the workflow and access the chat interface via the URL provided by the When Chat Message Received node Customization Options Interface Settings: Configure chat UI elements (e.g., title) in the When Chat Message Received node Prompt Engineering: Define agent personality and conversation structure in the Construct & Execute LLM Prompt node's template variable ⚠️ Template must preserve {chat_history} and {input} placeholders for proper LangChain operation Model Selection: Swap language models through the language model input field in Construct & Execute LLM Prompt Memory Control: Adjust conversation history length in the Store Conversation History node Requirements: ⚠️ This workflow uses the LangChain Code node, which only works on self-hosted n8n. (Refer to LangChain Code node docs)
by n8n Team
This workflow automatically adds closed deals from Pipedrive as new customers into Stripe. Prerequisites Pipedrive account and Pipedrive credentials Stripe account and Stripe credentials How it works Pipedrive trigger node starts the workflow when a deal gets updated in Pipedrive. IF node checks that the current won time is not equal to the previuos one in the deal and continues the workflow if it's true. Pipedrive node extracts the organization's details to pass it further. HTTP Request node searches for the same organization's details within Stripe. If a customer doesn't exist within Stripe, Merge node passes a new customer details to Stripe. Stripe node creates a new customer.
by Shiva
AI Voice Calling Bot - OpenAI GPT-4o + ElevenLabs + Twilio Integration for Multilingual Appointment Booking & Service Orders Overview Transform your business with an intelligent voice calling bot that handles customer calls automatically in 25+ languages. This N8n workflow integrates OpenAI GPT-4o, ElevenLabs text-to-speech, and Twilio for seamless appointment scheduling, pizza orders, and service bookings. Key Features Multilingual Support**: Conversations in English, Spanish, French, German, Italian, Portuguese, Chinese, Japanese, Arabic, and 20+ more languages Natural AI Conversations**: GPT-4o powered responses with ElevenLabs realistic voice synthesis Multi-Service Handling**: Appointments, orders, and service requests with automatic logging Real-time Processing**: Instant speech-to-text and audio response generation Prerequisites N8n instance (self-hosted or cloud) Twilio account with phone number OpenAI API key (GPT-4o access) ElevenLabs API credentials Google Sheets access Cloud storage for audio files Setup Instructions Step 1: Configure Credentials Add API keys for OpenAI, ElevenLabs, Twilio, and Google Sheets in N8n credentials manager. Step 2: Prepare Data Storage Create Google Sheets for call logs and appointments with columns: timestamp, caller_id, speech_input, ai_response, language, call_sid. Step 3: Configure Twilio Set webhook URL to your N8n endpoint: https://your-n8n-instance.com/webhook/voice-webhook Step 4: Update Sheet IDs Replace placeholder Google Sheet IDs in workflow nodes with your actual sheet IDs. Customization Options Voice Settings**: Adjust ElevenLabs multilingual voice models and parameters AI Behavior**: Modify system prompts for specific business needs and languages Service Types**: Add custom service handling logic Business Hours**: Implement language-specific operating hours Monitoring Track call analytics, language preferences, conversion rates, and customer satisfaction across all supported languages through automated Google Sheets logging. Ready for production use with comprehensive error handling and scalability for global businesses.
by n8n Team
This workflow automatically adds a note of the PR from GitHub to the Pipedrive contact if their GitHub email matches a Person in Pipedrive. Prerequisites Pipedrive account and Pipedrive credentials GitHub account and GitHub credentials How it works GitHub Trigger node activates the workflow when a GitHub user adds a PR. HTTP Request node gets the user's data and sends it further. Pipedrive node searches the same email that GitHub user has in Pipedrive. IF node checks whether a person with the same email exists in Pipedrive. In case there's such a person in Pipedrive, the Pipedrive node creates a note within the person's profile.
by Artur
Streamline your accounting by automatically creating QuickBooks Online customers and sales receipts whenever a successful Stripe payment is processed. Ideal for businesses looking to reduce manual data entry and improve accounting efficiency. How it works Trigger: The workflow is triggered when a new successful payment intent event is received from Stripe. Retrieve Customer Data: Fetches customer details from Stripe associated with the payment. Check QuickBooks Customer: Searches QuickBooks Online to see if the customer already exists using their email address. Create or Use Existing Customer: If the customer doesn't exist in QuickBooks, they are created; otherwise, the existing customer is used. Generate Sales Receipt: A sales receipt is created in QuickBooks Online with payment details, including item descriptions, amounts, and currency. Set up steps Connect Accounts: Authenticate both your QuickBooks Online and Stripe accounts in n8n. Webhook Setup: Configure the Stripe webhook to send payment_intent.succeeded events to this workflow. Test the Workflow: Trigger a test payment in Stripe to validate the integration. Customize Details: Adjust item descriptions or other fields in the QuickBooks sales receipt JSON body as needed. This workflow requires basic familiarity with n8n, but setup can be completed in under 15 minutes for most users.
by Yaron Been
🎤 Audio-to-Insights: Auto Meeting Summarizer Transform your meeting recordings into actionable insights automatically. This powerful n8n workflow monitors your Google Drive for new audio files, transcribes them using OpenAI's Whisper, generates intelligent summaries with ChatGPT, and logs everything in Google Sheets - all without lifting a finger. 🔄 How It Works This workflow operates as a seamless 6-step automation pipeline: Step 1: Smart Detection The workflow continuously monitors a designated Google Drive folder (polls every minute) for newly uploaded audio files. Step 2: Secure Download When a new audio file is detected, the system automatically downloads it from Google Drive for processing. Step 3: AI Transcription OpenAI's Whisper technology converts your audio recording into accurate text transcription, supporting multiple audio formats. Step 4: Intelligent Summarization ChatGPT processes the transcript using a specialized prompt that extracts: Key discussion points and decisions Action items with assigned persons and deadlines Priority levels and follow-up tasks Clean, professional formatting Step 5: Timestamp Generation The system automatically adds the current date and formats it consistently for tracking purposes. Step 6: Automated Logging The final summary is appended to your Google Sheets document with the date, creating a searchable archive of all meeting insights. ⚙️ Setup Steps Prerequisites Before setting up the workflow, ensure you have: Active Google Drive account OpenAI API key with credits Google Sheets access n8n instance (cloud or self-hosted) Configuration Steps 1. Credential Setup Google Drive OAuth2**: Required for folder monitoring and file downloads OpenAI API Key**: Needed for both transcription (Whisper) and summarization (ChatGPT) Google Sheets OAuth2**: Essential for writing summaries to your spreadsheet 2. Google Drive Configuration Create a dedicated folder in Google Drive for meeting recordings Copy the folder ID from the URL (the long string after /folders/) Update the folderToWatch parameter in the workflow 3. Google Sheets Preparation Create a new Google Sheet or use an existing one Ensure it has columns: Date and Meeting Summary Copy the spreadsheet ID from the URL Update the documentId parameter in the workflow 4. Audio Requirements Supported Formats**: MP3, WAV, M4A, MP4 Recommended Size**: Under 100MB for optimal processing Language**: Optimized for English (customizable for other languages) Quality**: Clear audio produces better transcriptions 5. Workflow Activation Import the workflow JSON into your n8n instance Configure all credential connections Test with a sample audio file Activate the workflow trigger 🚀 Use Cases Project Management Team Standup Summaries**: Convert daily standups into actionable task lists Sprint Retrospectives**: Extract improvement points and action items Stakeholder Updates**: Generate concise reports for leadership Sales & Customer Success Discovery Call Notes**: Capture prospect pain points and requirements Demo Follow-ups**: Track questions, objections, and next steps Customer Check-ins**: Monitor satisfaction and expansion opportunities Consulting & Professional Services Client Strategy Sessions**: Document recommendations and implementation plans Requirements Gathering**: Organize complex project specifications Progress Reviews**: Track deliverables and milestone achievements HR & Training Interview Debriefs**: Standardize candidate evaluation notes Training Sessions**: Create searchable knowledge bases Performance Reviews**: Document development plans and goals Research & Development Brainstorming Sessions**: Capture innovative ideas and concepts Technical Reviews**: Log decisions and architectural choices User Research**: Organize feedback and insights systematically 💡 Advanced Customization Options Enhanced Summarization Modify the ChatGPT prompt to focus on specific elements: Add speaker identification for multi-person meetings Include sentiment analysis for customer calls Generate department-specific summaries (technical, sales, legal) Extract financial figures and metrics automatically Integration Expansions Slack Integration**: Auto-post summaries to relevant channels Email Notifications**: Send summaries to meeting participants CRM Updates**: Push action items directly to Salesforce/HubSpot Calendar Integration**: Schedule follow-up meetings based on action items Quality Improvements Audio Preprocessing**: Add noise reduction before transcription Multi-language Support**: Configure for international teams Custom Templates**: Create industry-specific summary formats Approval Workflows**: Add human review before final storage 🛠️ Troubleshooting & Best Practices Common Issues Large File Processing**: Split recordings over 100MB into smaller segments Poor Audio Quality**: Use noise reduction tools before uploading API Rate Limits**: Implement delay nodes for high-volume usage Formatting Issues**: Adjust ChatGPT prompts for consistent output Optimization Tips Upload files in supported formats only Ensure stable internet connection for cloud processing Monitor OpenAI API usage and costs Regularly backup your Google Sheets data Test workflow changes with sample files first 📊 Expected Outputs Sample Summary Format: Meeting Summary - March 15, 2024 Key Discussion Points: Q1 budget review and allocation decisions New product launch timeline and milestones Team restructuring and role assignments Action Items: John: Finalize budget proposal by March 20th (High Priority) Sarah: Schedule product demo sessions for March 25th Team: Submit org chart feedback by March 18th Decisions Made: Approved additional marketing budget of $50K Delayed product launch to April 15th for quality assurance Promoted Lisa to Senior Developer role 📞 Questions & Support For any questions, customizations, or technical support regarding this workflow: 📧 Email Support Primary Contact**: Yaron@nofluff.online Response Time**: Within 24 hours on business days Best For**: Setup questions, customization requests, troubleshooting 🎥 Learning Resources YouTube Channel**: https://www.youtube.com/@YaronBeen/videos Step-by-step setup tutorials Advanced customization guides Workflow optimization tips 🔗 Professional Network LinkedIn**: https://www.linkedin.com/in/yaronbeen/ Connect for ongoing support Share your workflow success stories Get updates on new automation ideas 💡 What to Include in Your Support Request Describe your specific use case Share any error messages or logs Mention your n8n version and setup type Include sample audio file characteristics (if relevant) Ready to transform your meeting chaos into organized insights? Download the workflow and start automating your meeting summaries today!
by Airtop
Extracting Comments from an X Post Use Case Engaging with conversations on X (formerly Twitter) is critical for brands and individuals monitoring sentiment, leads, or emerging trends. Manually collecting comments is time-consuming—this automation enables scalable extraction of comment data to inform your outreach or analysis. What This Automation Does This automation extracts comments from a specified X post, with the following input parameters: airtop_profile**: The name of your Airtop Profile connected to X. x_post_url**: The URL of the X post to extract comments from. max_number_of_comments**: The maximum number of comments to retrieve. How It Works Takes input via a form or another workflow. Normalizes the input values. Creates a new browser session using Airtop. Navigates to the provided X post. Uses a prompt to extract up to the specified number of comments, returning: Author name Author profile URL Comment text Setup Requirements Airtop API Key — free to generate. An Airtop Profile connected to X (requires one-time login). Next Steps Pair with X Monitoring**: Use this with the X monitoring automation to detect relevant posts and extract discussion context automatically. Feed into Analytics**: Combine with summarization or sentiment analysis tools to understand audience response at scale. Export for CRM/BI**: Pipe the structured comment data into your CRM or business intelligence stack for lead tracking or reporting. Read more about Extracting Comments from X Posts
by n8n Team
This template shows how to sync data from one service to another. Specifically, in this example we're saving a new qualified lead from a Postgres database to a Google Sheets file. Setup instructions are located inside the workflow template.
by Yang
Who is this for? This workflow is perfect for marketers, SEO specialists, product teams, and competitive analysts who want to monitor and summarize public reviews of their competitors. It’s especially helpful for small teams who want fast insights from Google reviews without spending hours manually reading and sorting them. What problem is this workflow solving? Manually going through competitor reviews is time-consuming and repetitive. You risk missing patterns or insights, and it’s hard to share summaries with your team quickly. This workflow automatically scrapes reviews from Google and generates a structured summary of pain points and positive feedback. That way, you can focus on strategy instead of sorting through dozens of reviews. What this workflow does This automation watches for new competitor entries in a Google Sheet, then: Uses Dumpling AI to scrape the latest Google reviews (up to 20) for each business. Splits and cleans the reviews for analysis. Sends them to GPT-4o, which summarizes the most common complaints and praises. Saves the structured result back to the same Google Sheet. You’ll instantly get an overview of what people are saying about any competitor. Setup Google Sheet Setup Create a Google Sheet with at least one column: Business Add names or search queries for the competitors you want to analyze Optional: Add columns for Summary of Reviews and Pain Points Connect Dumpling AI Sign up at Dumpling AI Create an agent using the get-google-reviews endpoint Copy your agent key Use it in the HTTP Request node in this workflow OpenAI Setup Use your API key with GPT-4o access The prompt is already structured to generate grouped summaries from reviews Run the Workflow Trigger it manually or schedule it Make sure your Google Sheets, OpenAI, and Dumpling AI connections are active How to customize this workflow to your needs You can expand the number of reviews retrieved by changing the Dumpling AI agent config Replace Google Sheets with Airtable if you want more robust data views Add more fields like star ratings or review dates in your agent for richer analysis Change the GPT prompt to highlight emotional tone, urgency, or feature mentions 🧠 Node Details Google Sheets Trigger**: Watches for new competitor names HTTP Request (Dumpling AI)**: Scrapes 20 recent reviews from Google SplitOut Node**: Breaks review array into individual items Code Node**: Extracts and combines review text Edit Fields Node**: Structures the review content before GPT GPT-4o Node**: Analyzes and summarizes top pain points and praise Google Sheets Output**: Saves the summary back to the same sheet Dependencies Dumpling AI account and review scraping agent setup OpenAI API key with GPT-4o access Google Sheets OAuth2 credentials
by Angel Menendez
Enhance Query Resolution with the Knowledge Base Tool! Our KB Tool - Confluence KB is crafted to seamlessly integrate into the IT Ops AI SlackBot Workflow, enhancing the IT support process by enabling sophisticated search and response capabilities via Slack. Workflow Functionality: Receive Queries**: Directly accepts user queries from the main workflow, initiating a dynamic search process. AI-Powered Query Transformation**: Utilizes OpenAI's models or local ai to refine user queries into searchable keywords that are most likely to retrieve relevant information from the Knowledge Base. Confluence Integration**: Executes searches within Confluence using the refined keywords to find the most applicable articles and information. Deliver Accurate Responses**: Gathers essential details from the Confluence results, including article titles, links, and summaries, preparing them to be sent back to the parent workflow for final user response. To view a demo video of this workflow in action, click here. Quick Setup Guide: Ensure correct configurations are set for OpenAI and Confluence API integrations. Customize query transformation logic as per your specific Knowledge Base structure to improve search accuracy. Need Help? Dive into our Documentation or get support from the Community Forum! Deploy this tool to provide precise and informative responses, significantly boosting the efficiency and reliability of your IT support workflow.
by please-open.it
Intro This workflow needs a user to authenticate by using an openid connect provider in order to call the webhook. If the user is not authenticated, it starts a login process by using an Authorization Code with PKCE https://datatracker.ietf.org/doc/html/rfc7636, a standard way to authenticate users with openid connect. Then, after the user logs in, the webhook is refreshed and gets the user's token from a cookie. With this token, all details about the user are requested through the userinfo endpoint on the identity provider. How to set up with Keycloak Keycloak Keycloak is an open source identity and access management solution. Feel free to get a demo realm at https://please-open.it or get your own Keycloak server up and running. After creating a realm, go to "Realm Settings" and click on "OpenID Endpoint Configuration" Retrieve authorization_endpoint, token_endpoint and userinfo_endpoint values. Set those variables in the "Set variables" node. In Keycloak, create a new client (name it as you want) Disable the client authentication, check only "standard flow" : At the third step, put the webhook url in "valid redirect URIs", fill "Web origins" with a "+". You're done, open the webhook and it asks you to authenticate. Usage User informations The userinfo node returns this structure about the user has logged in : [ { "sub":"73a6543f-f420-4fa6-9811-209e903c348b", "email_verified":true, "preferred_username": "mathieu.passenaud@please-open.it", "email": "mathieu.passenaud@please-open.it" } ] I can use those infos in my workflow for custom operations. APIs calls the "code" node returns me a cookie named "n8n-custom-auth" which is the access_token returned by the identity provider. This access_token can be used to call APIs connected to this identity provider (for example, we call userinfo API with this token). Example : asks a user to log in with his Google account then call an API (Gmail, drive...) with his own token. How it works We published a blog post about this flow, how it works and how you can use it : https://blog.please-open.it/n8n-openid-client/