by Anurag
Description This workflow automates the extraction of structured data from invoices or similar documents using Docsumo's API. Users can upload a PDF via an n8n form trigger, which is then sent to Docsumo for processing and structured parsing. The workflow fetches key document metadata and all line items, reconstructs each invoice row with combined header and item details, and finally exports all results as an Excel file. Ideal for automating invoice data entry, reporting, or integrating with accounting systems. How It Works A user uploads a PDF document using the integrated n8n form trigger. The workflow securely sends the document to Docsumo via REST API. After uploading, it checks and retrieves the parsed document results. Header information and table line items are extracted and mapped into structured records. The complete result is exported as an Excel (.xls) file. Setup Steps Docsumo Account: Register and obtain your API key from Docsumo. n8n Credentials Manager: Add your Docsumo API key as an HTTP header credential (never hardcode the key in the workflow). Workflow Configuration: In the HTTP Request nodes, set the authentication to your saved Docsumo credentials. Update the file type or document type in the request (e.g., "type": "invoice") as needed for your use case. Testing: Enable the workflow and use the built-in form to upload a sample invoice for extraction. Features Supports PDF uploads via n8n’s built-in form or via API/webhook extension. Sends files directly to Docsumo for document data extraction using secure credentials. Extracts invoice-level metadata (number, date, vendor, totals) and full line item tables. Consolidates all data in easy-to-use Excel format for download or integration. Modular node structure, easily extensible for further automation. Prerequisites Docsumo account with API access enabled. n8n instance with form, HTTP Request, Code, and Excel/Convert to File nodes. Working Docsumo API Key stored securely in n8n’s credential manager. Example Use Cases | Scenario | Benefit | |---------------------|-----------------------------------------| | Invoice Automation | Extract line items and metadata rapidly | | Receipts Processing | Parse and digitize business receipts | | Bulk Bill Imports | Batch process bills for analytics | Notes Credentials Security:** Do not store your API key directly in HTTP Request nodes; always use n8n credentials manager. Sticky Notes:** The workflow includes sticky notes for setup, input, API call, extraction, and output steps to assist template users. Custom Columns:** You can customize header or line item extraction by editing the Code node as needed.
by Jaruphat J.
Who is this for? This workflow is ideal for businesses, accountants, and finance teams who receive bank slip images via LINE and want to automate the extraction of transaction details. It eliminates manual data entry and speeds up financial tracking. What problem does this workflow solve? Many businesses receive bank transfer slips via LINE from customers, but manually recording transaction details into spreadsheets is time-consuming and error-prone. This workflow automates the entire process, extracting structured data from the bank slips and storing it in Google Sheets for seamless record-keeping. What this workflow does: Receives bank slip images from LINE BOT Extracts transaction details (sender, receiver, amount, transaction ID) using SpaceOCR Automatically logs extracted data into Google Sheets Works with Standard Bank Slips & PromptPay transactions Eliminates manual data entry and reduces errors Setup Instructions: 1. Prerequisites A LINE BOT with Messaging API enabled A SpaceOCR API Key (Get from https://spaceocr.com/) A Google Sheets account to store extracted data An n8n instance running (Cloud or Self-hosted) 2. Setup Google Sheets Create a Google Sheet with the following structure: A (Date) B (Time) C (Sender) D (Receiver) E (Bank Name) F (Amount) G (Transaction ID) Ensure your Google Sheets API is enabled and connected to n8n. For an example of the required format, check this Google Sheets template: Google Sheets Template 3. Configure n8n Workflow 1. Webhook Node (Receives bank slip from LINE BOT) Set method:* Set Path:* 2. HTTP Request (Download Image from LINE Message) Retrieves image URL from the LINE message payload 3. SpaceOCR Node (Extract Text from Bank Slip) Input:* API Key:* #### 4. Google Sheets Node (Save Transaction Data) Select your Google Sheet Map extracted data (sender, receiver, amount, etc.) to the respective columns 4. Deploy & Test Activate the workflow in n8n Set Webhook URL in LINE Developer Console Send a test bank slip image to the LINE BOT Check Google Sheets for extracted transaction data
by Dave Bernier
This n8n workflow template uses community nodes and is only compatible with the self-hosted version of n8n. This template aims to ease the process of deploying workflows from github. It has a companion repository that developers might find useful{. See below for more details How it works Automatically import and deploy n8n workflows from your GitHub repository to your production n8n instance using a secured webhook-based approach. This template enables teams to maintain version control of their workflows while ensuring seamless deployment through a CI/CD pipeline. Receives webhook notifications from GitHub when changes are pushed to your repository Lists all files in the repository and filters for .json workflow files Downloads each workflow file and saves it locally Imports all workflows into n8n using the CLI import command Cleans up temporary files after successful import To trigger the deployment, send a POST request to your webhook with the set up credentials (basic auth) with the following body: { "owner": "GITHUB_REPO_OWNER_NAME", "repository": "GITHUB_REPOSITORY_NAME" } Set up steps Once importing this template in n8n : Setup the webhook basic auth credentials Setup the github credentials Activate the workflow ! Companion repository There is a companion repository located at https://github.com/dynamicNerdsSolutions/n8n-git-flow-template that has a Github action already setup to work with this workflow. It provides a complete development environment with: Local n8n instance via Docker Automated workflow export and commit scripts Version control integration CI/CD pipeline setup This setup allows teams to maintain a clean separation between development and production environments while ensuring reliable workflow deployment.
by Khairul Muhtadin
❓ What Problem Does It Solve? Manual exporting or copying of leads and newsletter signups from web forms to spreadsheets is time-consuming, error-prone, and delays follow-ups or marketing activities. Traditional workflows can lose data due to mistakes or lack of automation. The Fluentform Export workflow automates the capture and organization of form submissions and newsletter signups into Google Sheets 💡 Why Use this workflow? Save Time:** Automate tedious manual data entry for form leads and newsletter signups Avoid Data Loss:** Ensure all submissions are reliably logged with real-time updates Organized Data:** Separate sheets for newsletter and contact form data maintain clarity Easy Integration:** Works seamlessly with Fluentform submissions and Google Sheets Flexible & Scalable:** Quickly adapt to changes in form structure or spreadsheet columns ⚡ Who Is This For? Marketers & Growth Teams:** Automatically gather leads and newsletter contacts to fuel campaigns Small to Medium Businesses:** Reduce overhead from manual data management and errors Customer Support Teams:** Keep track of form submissions in a centralized, accessible place Website Admins:** Simplify data workflow from Fluentform plugins without coding 🔧 What This Workflow Does ⏱ Trigger:** Listens for incoming POST requests from Fluentform via webhook 📎 Step 2:** Evaluates if the submission is a newsletter signup or a form based on a specific token 🔄 Step 3 (Newsletter Path):** Maps email from newsletter submissions and appends/updates Google Sheets "News Letter" tab 🔄 Step 3 (Form Path):** Extracts full name, email, phone, subject, and message fields and appends/updates the Google Sheets "form" tab 💌 Step 4:** Sends a JSON success response back to Fluentform confirming receipt 🔐 Setup Instructions Import the provided .json workflow file into your n8n instance Set up credentials: Google Sheets OAuth2 credential with access to your target spreadsheets Customize workflow elements: Update Fluentform webhook URL in your Fluentform settings to the n8n webhook URL generated Adjust field names or spreadsheet columns if your form structure changes Update spreadsheet IDs and sheet names used in the Google Sheets nodes to match your own Sheets Test workflow thoroughly with actual Fluentform submissions to verify data flows correctly 🧩 Pre-Requirements Running n8n instance (Cloud or self-hosted) Google account with access to Google Sheets and OAuth credentials Fluentform installed on your website with ability to set webhook URL Target Google Sheets prepared with tabs named "News Letter" and "form" with expected columns 🧠 Nodes Used Webhook (POST - Retrieve Leads) If (Form or newsletter?) Set (newsletter and form data preparation) Google Sheets (Append/update for newsletter and form sheets) Respond to Webhook 📞 Support Made by: khaisa Studio Tag: automation, Google Sheets, Fluentform, Leads Category: Marketing Need a custom? Contact Me
by Niranjan G
Who is this for? NVD (National Vulnerability Database) data is essential for security analysts, vulnerability managers, and DevSecOps professionals who need to perform both CVE lookups and monitor historical change logs. This workflow helps streamline those efforts by providing structured outputs for audit, triage, or compliance tracking purposes. 📝 Note: While this example uses Google Sheets as the destination, you can easily modify the final destination node (e.g., send to Slack, email, database, etc.) based on your specific automation needs.? What problem is this solving? Security teams often manually look up CVE data and track changes across multiple tools. This process is inefficient and error-prone. This workflow automates the CVE lookup and historical change tracking by logging enriched vulnerability data into Google Sheets in real-time. What this workflow does This workflow is designed for CVE API lookup and change history tracking. In many vulnerability automation pipelines, it is essential to determine not only the metadata of a CVE but also how it has evolved over time. Based on the operational need—whether it's enrichment, risk scoring, or remediation validation—this workflow becomes particularly handy in surfacing both current and historical CVE data. This template performs the following actions: Accepts incoming webhook requests containing a CVE ID Queries the NVD CVE Lookup API to fetch vulnerability metadata Queries the NVD CVE History API to retrieve all historical changes Flattens both datasets into a sheet-compatible structure Appends vulnerability metadata to one sheet and change history to another within the same Google Spreadsheet Setup 🔑 Request an NVD API Key To request an NVD API Key, please provide your organization name, a valid email address, and indicate your organization type at NVD API Key Request. You must scroll to the end of the Terms of Use Agreement and check "I agree to the Terms of Use" to obtain an API Key. After submission, you will receive a single-use hyperlink via email to activate and view your API Key. If not activated within seven days, a new request must be submitted. 📊 API Rate Limits Without an API key, you're limited to 5 requests per 30-second window. With an API key, you’re allowed up to 50 requests in the same period. To prevent request throttling, it's recommended to introduce slight delays between consecutive API calls in production setups. Clone or import this workflow into your n8n instance. Set up the following credentials: Google Sheets OAuth2 NVD API Key (via HTTP Header Auth) The workflow logs data to a Google Sheet titled NVD Database, with Sheet 1 named CVE Lookup and Sheet 2 named CVE History. Trigger each workflow using the respective webhook URL, appending ?cveId=CVE-XXXX-XXXX as a query parameter. 🔍 Example Webhook Request (CVE Change History) You can test this workflow with the following example: GET https://your-domain.com/webhook/cve-history?cveId=CVE-2023-34362 How to customize this workflow Use the Edit Fields node (optional) to centralize configuration like sheet name or query input Extend the CVE flattening logic to include more nested metadata if needed Integrate notification systems (e.g., Slack or email) by branching from the processing nodes Modify webhook paths for better endpoint organization 🔐 Production Security Tips Use HTTP Header Auth on the webhook for secure access > ⚠️ This template uses webhooks and NVD API access with authentication headers. This template uses two flows: Webhook 1:** NVD CVE Lookup — Lookup CVE vulnerability metadata from NVD and sync to Google Sheet Webhook 2:** NVD CVE Change History — Track change history for CVEs via NVD and log each update Each flow: Hits NVD’s respective endpoint Uses custom JS Code node to flatten the nested JSON Syncs data to dedicated Google Sheet tabs 🧩 4 nodes: Webhook → API Call → Parse → Sheet Sync Make sure both flows are activated and webhooks exposed for external access. Based on your needs, ensure you have a secure setup—whether hosted internally or in a cloud environment—when running n8n in production.
by ist00dent
This n8n template allows you to instantly fetch a random dog image from the Dog CEO API by simply sending a webhook request. It's a fun and simple way to integrate random dog photos into your projects, whether for websites, applications, or playful automations. 🔧 How it works Trigger Webhook: This node acts as the entry point for the workflow. It listens for any incoming POST request. No specific data is required in the webhook body, as the workflow fetches a random image. Fetch Random Dog Image: This node makes an HTTP GET request to https://dog.ceo/api/breeds/image/random. The API responds with a JSON object containing the URL of a random dog image. Respond with Image URL: This node sends the URL of the random dog image back to the service that initiated the webhook. 👤 Who is it for? This workflow is ideal for: Developers: Quickly integrate random dog images into web applications, bots, or prototypes. Content Creators: Get fresh, random dog photos for social media, blogs, or presentations. Learning n8n: A straightforward example of using a webhook to trigger an API call and return data. Anyone who loves dogs! 📑 Data Structure When you trigger the webhook, you can send an empty POST request body. The workflow will return a JSON response similar to this (the message URL will vary): { "message": "https://images.dog.ceo/breeds/hound-walker/n02089867_2626.jpg", "status": "success" } ⚙️ Setup Instructions Import Workflow: In your n8n editor, click "Import from JSON" and paste the provided workflow JSON. Configure Webhook Path: Double-click the Trigger Webhook node. In the 'Path' field, set a unique and descriptive path (e.g., /get-dog-image). Activate Workflow: Save and activate the workflow. 📝 Tips Download the Image: Instead of just returning the URL, you can download the image and then process it. Insert another HTTP Request node after Fetch Random Dog Image to download the image binary. Set the HTTP Request node's 'Response Format' to 'Binary'. Use the expression ={{ $json.message }} for the URL. Save to Cloud Storage: After downloading the image (as described above), you can save it to various cloud storage services: Google Drive: Add a Google Drive node. Connect it to the output of the image download node. Configure it to upload the binary data to a specific folder. Amazon S3: Add an AWS S3 node. Configure it to upload the binary data, specifying your bucket and desired filename. Dropbox: Use the Dropbox node to upload the image file. Send as a Message: Share the dog image directly in a chat or email: Slack/Discord/Telegram: Use the respective integration node to send the image URL or the downloaded image as an attachment. Email: Attach the downloaded image to an email using an Email or Gmail node. Display on a Web Page: If you're embedding this into a web application, you can simply use the returned URL in an tag to display the image. Error Handling: You can add an Error Trigger node to catch any issues during the image fetching process (e.g., if the Dog CEO API is down) and send notifications.
by Yang
Who is this for? This workflow is for digital marketers, small business owners, lead generation agencies, and VAs who need a scalable way to find and store local business leads using AI. It’s especially useful for teams that want to enrich leads with real-time news insights and save the structured data to Airtable. What problem is this workflow solving? Manually researching local businesses and staying up to date with relevant news is time-consuming and inefficient. This automation eliminates that burden by using Dumpling AI chat agents to generate leads and context, GPT-4o to summarize, and Airtable to store everything in one place. What this workflow does This AI workflow listens for a manual trigger in n8n and executes the following steps: Extracts local business leads using a Local Business Agent from Dumpling AI. Pulls current news related to the business type or location using a News Agent from Dumpling AI. Uses GPT-4o to combine both responses into a human-readable summary. Extracts structured lead data like name, category, and city. Saves the summary and lead data into Airtable for easy follow-up. Setup 1. Create AI Agents in Dumpling AI Sign in at Dumpling AI Create two separate agents: Local Business Agent: Designed to respond with structured lists of businesses by location and category. News Agent: Designed to fetch relevant recent news and summaries about a specific industry or region. After setting up each agent, copy the Agent Key from Dumpling AI. These keys will be required in the headers of your HTTP Request nodes in n8n. 2. Manual Trigger This workflow begins with a manual trigger inside n8n, Which is the When chat message is recieved. This makes it easy to test and reuse, especially during setup. 3. Get Local Business Data from Dumpling AI The first HTTP Request node sends a prompt like List 5 top real estate companies in Atlanta with full address and services. Include your Local Business Agent Key in the x-agent-key header. The response will return a structured list of business leads. 4. Get News Context from Dumpling AI The second HTTP Request node sends a prompt such as Give me the latest news related to the real estate market in Atlanta. Use your News Agent Key in the header. This fetches a brief set of recent news summaries relevant to the businesses being researched. 5. Use GPT-4o to Merge and Summarize The GPT node combines the list of businesses and news into one coherent summary. You can modify the prompt to output in paragraph format, bullet points, or structured notes. 6. Save Lead to Airtable The Airtable node sends all structured fields into your selected base and table. Be sure to connect your Airtable account and confirm the columns match exactly. How to customize this workflow Replace the prompt inside the HTTP node to focus on different types of businesses or cities. Expand the GPT output to include additional lead info like websites, phone numbers, or emails if the agent includes them. Add a webhook trigger to allow this flow to be run via a chatbot, external app, or button. Link to HubSpot or another CRM to sync the leads automatically. Duplicate the process to run for multiple industries in parallel. Final Notes You must create and configure your Dumpling AI agents first before running this workflow. The Agent Keys from Dumpling AI are required in both HTTP Request nodes. This flow is modular and flexible, ready for deeper CRM integrations. The manual trigger is great for testing, but you can add a Webhook node to automate it. This workflow helps you launch an intelligent lead gen process that combines location-targeted business discovery, AI-generated insights, and structured CRM-friendly output, all powered by Dumpling AI and OpenAI.
by n8n Team
This workflow creates a GitHub issue when a new ticket is created in Zendesk. Subsequent comments on the ticket in Zendesk are added as comments to the issue in GitHub. Prerequisites Zendesk account and Zendesk credentials. GitHub account and GitHub credentials. GitHub repository to create issues in. How it works The workflow listens for new tickets in Zendesk. When a new ticket is created, the workflow creates a new issue in GitHub. The GitHub issue number is then saved in one of the ticket's fields (in setup we call this "GitHub Issue Number"). The next time a comment is added to the ticket, the workflow retrieves the GitHub issue number from the ticket's field and adds the comment to the issue in GitHub. Setup This workflow requires that you set up a webhook in Zendesk. To do so, follow the steps below: In the workflow, open the On new Zendesk ticket node and copy the webhook URL. In Zendesk, navigate to Admin Center > Apps and integrations > Webhooks > Actions > Create Webhook. Add all the required details which can be retrieved from the On new Zendesk ticket node. The webhook URL gets added to the “Endpoint URL” field, and the “Request method” should match what is shown in n8n. Save the webhook. In Zendesk, navigate to Admin Center > Objects and rules > Business rules > Triggers > Add trigger. Give trigger a name such as “New tickets”. Under “Conditions” in “Meet ALL of the following conditions”, add “Status is New”. Under “Actions”, select “Notify active webhook” and select the webhook you created previously. In the JSON body, add the following: { "id": "{{ticket.id}}", "comment": "{{ticket.latest_comment_html}}" } Save the Zendesk trigger. You will also need to set up a field in Zendesk to store the GitHub issue number. To do so, follow the steps below: In Zendesk, navigate to Admin Center > Objects and rules > Tickets > Fields > Add field. Use the number field option and give the field a name such as “GitHub Issue Number”. Save the field. In n8n, open the Update ticket node and select the field you created in Zendesk.
by n8n Team
This workflow creates a Slack thread when a new ticket is created in Zendesk. Subsequent comments on the ticket in Zendesk are added as replies to the thread in Slack. Prerequisites Zendesk account and Zendesk credentials. Slack account and Slack credentials. Slack channel to create threads in. How it works The workflow listens for new tickets in Zendesk. When a new ticket is created, the workflow creates a new thread/message in Slack. The Slack thread ID is then saved in one of the ticket's fields called "Slack thread ID". The next time a comment is added to the ticket, the workflow retrieves the Slack thread ID from the ticket's field and adds the comment to the thread/message in Slack as a reply. Setup This workflow requires that you set up a webhook in Zendesk. To do so, follow the steps below: In the workflow, open the On new Zendesk ticket node and copy the webhook URL. In Zendesk, navigate to Admin Center > Apps and integrations > Webhooks > Actions > Create Webhook. Add all the required details which can be retrieved from the On new Zendesk ticket node. The webhook URL gets added to the “Endpoint URL” field, and the “Request method” should match what is shown in n8n. Save the webhook. In Zendesk, navigate to Admin Center > Objects and rules > Business rules > Triggers > Add trigger. Give trigger a name such as “New tickets”. Under “Conditions” in “Meet ALL of the following conditions”, add “Status is New”. Under “Actions”, select “Notify active webhook” and select the webhook you created previously. In the JSON body, add the following: { "id": "{{ticket.id}}", "comment": "{{ticket.latest_comment_html}}" } Save the Zendesk trigger. You will also need to set up a field in Zendesk to store the Slack thread ID. To do so, follow the steps below: In Zendesk, navigate to Admin Center > Objects and rules > Tickets > Fields > Add field. Use the text field option and give the field a name such as “Slack thread ID”. Save the field. In n8n, open the Update ticket node and select the field you created in Zendesk.
by Pavel Duchovny
Who is this for? This workflow is designed for: Database administrators and developers working with MongoDB Content managers handling movie databases Organizations looking to implement AI-powered search and recommendation systems Developers interested in combining LangChain, OpenAI, and MongoDB capabilities What problem does this workflow solve? Traditional database queries can be complex and require specific MongoDB syntax knowledge. This workflow addresses: The complexity of writing MongoDB aggregation pipelines The need for natural language interaction with movie databases The challenge of maintaining user preferences and favorites The gap between AI language models and database operations What this workflow does This workflow creates an intelligent agent that: Accepts natural language queries about movies Translates user requests into MongoDB aggregation pipelines Queries a movie database containing detailed information including: Plot summaries Genre classifications Cast and director information Runtime and release dates Ratings and awards Provides contextual responses using OpenAI's language model Allows users to save favorite movies to the database Maintains conversation context using a window buffer memory Setup Required Credentials: OpenAI API credentials MongoDB connection details Node Configuration: Configure the MongoDB connection in the MongoDBAggregate node Set up the OpenAI Chat Model with your API key Ensure the webhook trigger is properly configured for receiving chat messages Database Requirements: A MongoDB collection named "movies" with the specified document structure Proper indexes for efficient querying Appropriate user permissions for read/write operations How to customize this workflow Modify the Document Structure: Update the tool description in the MongoDBAggregate node to match your collection schema Adjust the aggregation pipeline templates for your specific use case Enhance the AI Agent: Customize the prompt in the "AI Agent - Movie Recommendation" node Modify the window buffer memory size based on your context needs Add additional tools for more functionality Extend Functionality: Add more MongoDB operations beyond aggregation Implement additional workflows for different types of queries Create custom error handling and validation Add user authentication and rate limiting Integration Options: Connect to external APIs for additional movie data Add webhook endpoints for different platforms Implement caching mechanisms for frequent queries Add data transformation nodes for specific output formats This workflow serves as a foundation that can be adapted to various use cases beyond movie recommendations, such as e-commerce product search, content management systems, or any scenario requiring intelligent database interaction.
by Danger
Ok google download "movie name" I develop this automation to improve my quality of life in handling torrents in my media-center. Goal Automate the search operations of a movie based on its name and trigger a download using your transmission-daemon. Setup Prerequisite Transmission daemon up and running and its authentication method N8N configured self-hosted or with the possibility to add npm package better with docker-compose.yaml Telegram bot credential [optional] Configuration Create a folder where your docker-compose.yaml belongs n8n_dir and proceed in installing the node package. cd ~/n8n_dir npm i torrent-search-api Configuring your docker-compose.yaml file this way. You must include all the dependencies of torrent-search-api. This will let you run the new torrent search node presented in this workflow. version: '3.3' services: n8n: container_name: n8n ports: '5678:5678' restart: always volumes: '~/n8n_dir/.n8n:/home/node/.n8n' '~/n8n_dir/node_modules/@tootallnate:/usr/local/lib/node_modules/@tootallnate' '~/n8n_dir/node_modules/accepts:/usr/local/lib/node_modules/accepts' '~/n8n_dir/node_modules/agent-base:/usr/local/lib/node_modules/agent-base' '~/n8n_dir/node_modules/ajv:/usr/local/lib/node_modules/ajv' '~/n8n_dir/node_modules/ansi-styles:/usr/local/lib/node_modules/ansi-styles' '~/n8n_dir/node_modules/asn1:/usr/local/lib/node_modules/asn1' '~/n8n_dir/node_modules/assert:/usr/local/lib/node_modules/assert' '~/n8n_dir/node_modules/assert-plus:/usr/local/lib/node_modules/assert-plus' '~/n8n_dir/node_modules/ast-types:/usr/local/lib/node_modules/ast-types' '~/n8n_dir/node_modules/asynckit:/usr/local/lib/node_modules/asynckit' '~/n8n_dir/node_modules/aws-sign2:/usr/local/lib/node_modules/aws-sign2' '~/n8n_dir/node_modules/aws4:/usr/local/lib/node_modules/aws4' '~/n8n_dir/node_modules/base64-js:/usr/local/lib/node_modules/base64-js' '~/n8n_dir/node_modules/batch:/usr/local/lib/node_modules/batch' '~/n8n_dir/node_modules/bcrypt-pbkdf:/usr/local/lib/node_modules/bcrypt-pbkdf' '~/n8n_dir/node_modules/bluebird:/usr/local/lib/node_modules/bluebird' '~/n8n_dir/node_modules/boolbase:/usr/local/lib/node_modules/boolbase' '~/n8n_dir/node_modules/brotli:/usr/local/lib/node_modules/brotli' '~/n8n_dir/node_modules/bytes:/usr/local/lib/node_modules/bytes' '~/n8n_dir/node_modules/caseless:/usr/local/lib/node_modules/caseless' '~/n8n_dir/node_modules/chalk:/usr/local/lib/node_modules/chalk' '~/n8n_dir/node_modules/cheerio:/usr/local/lib/node_modules/cheerio' '~/n8n_dir/node_modules/cloudscraper:/usr/local/lib/node_modules/cloudscraper' '~/n8n_dir/node_modules/co:/usr/local/lib/node_modules/co' '~/n8n_dir/node_modules/color-convert:/usr/local/lib/node_modules/color-convert' '~/n8n_dir/node_modules/color-name:/usr/local/lib/node_modules/color-name' '~/n8n_dir/node_modules/combined-stream:/usr/local/lib/node_modules/combined-stream' '~/n8n_dir/node_modules/component-emitter:/usr/local/lib/node_modules/component-emitter' '~/n8n_dir/node_modules/content-disposition:/usr/local/lib/node_modules/content-disposition' '~/n8n_dir/node_modules/content-type:/usr/local/lib/node_modules/content-type' '~/n8n_dir/node_modules/cookiejar:/usr/local/lib/node_modules/cookiejar' '~/n8n_dir/node_modules/core-util-is:/usr/local/lib/node_modules/core-util-is' '~/n8n_dir/node_modules/css-select:/usr/local/lib/node_modules/css-select' '~/n8n_dir/node_modules/css-what:/usr/local/lib/node_modules/css-what' '~/n8n_dir/node_modules/dashdash:/usr/local/lib/node_modules/dashdash' '~/n8n_dir/node_modules/data-uri-to-buffer:/usr/local/lib/node_modules/data-uri-to-buffer' '~/n8n_dir/node_modules/debug:/usr/local/lib/node_modules/debug' '~/n8n_dir/node_modules/deep-is:/usr/local/lib/node_modules/deep-is' '~/n8n_dir/node_modules/degenerator:/usr/local/lib/node_modules/degenerator' '~/n8n_dir/node_modules/delayed-stream:/usr/local/lib/node_modules/delayed-stream' '~/n8n_dir/node_modules/delegates:/usr/local/lib/node_modules/delegates' '~/n8n_dir/node_modules/depd:/usr/local/lib/node_modules/depd' '~/n8n_dir/node_modules/destroy:/usr/local/lib/node_modules/destroy' '~/n8n_dir/node_modules/dom-serializer:/usr/local/lib/node_modules/dom-serializer' '~/n8n_dir/node_modules/domelementtype:/usr/local/lib/node_modules/domelementtype' '~/n8n_dir/node_modules/domhandler:/usr/local/lib/node_modules/domhandler' '~/n8n_dir/node_modules/domutils:/usr/local/lib/node_modules/domutils' '~/n8n_dir/node_modules/ecc-jsbn:/usr/local/lib/node_modules/ecc-jsbn' '~/n8n_dir/node_modules/ee-first:/usr/local/lib/node_modules/ee-first' '~/n8n_dir/node_modules/emitter-component:/usr/local/lib/node_modules/emitter-component' '~/n8n_dir/node_modules/enqueue:/usr/local/lib/node_modules/enqueue' '~/n8n_dir/node_modules/enstore:/usr/local/lib/node_modules/enstore' '~/n8n_dir/node_modules/entities:/usr/local/lib/node_modules/entities' '~/n8n_dir/node_modules/error-inject:/usr/local/lib/node_modules/error-inject' '~/n8n_dir/node_modules/escape-html:/usr/local/lib/node_modules/escape-html' '~/n8n_dir/node_modules/escape-string-regexp:/usr/local/lib/node_modules/escape-string-regexp' '~/n8n_dir/node_modules/escodegen:/usr/local/lib/node_modules/escodegen' '~/n8n_dir/node_modules/esprima:/usr/local/lib/node_modules/esprima' '~/n8n_dir/node_modules/estraverse:/usr/local/lib/node_modules/estraverse' '~/n8n_dir/node_modules/esutils:/usr/local/lib/node_modules/esutils' '~/n8n_dir/node_modules/extend:/usr/local/lib/node_modules/extend' '~/n8n_dir/node_modules/extsprintf:/usr/local/lib/node_modules/extsprintf' '~/n8n_dir/node_modules/fast-deep-equal:/usr/local/lib/node_modules/fast-deep-equal' '~/n8n_dir/node_modules/fast-json-stable-stringify:/usr/local/lib/node_modules/fast-json-stable-stringify' '~/n8n_dir/node_modules/fast-levenshtein:/usr/local/lib/node_modules/fast-levenshtein' '~/n8n_dir/node_modules/file-uri-to-path:/usr/local/lib/node_modules/file-uri-to-path' '~/n8n_dir/node_modules/forever-agent:/usr/local/lib/node_modules/forever-agent' '~/n8n_dir/node_modules/form-data:/usr/local/lib/node_modules/form-data' '~/n8n_dir/node_modules/format-parser:/usr/local/lib/node_modules/format-parser' '~/n8n_dir/node_modules/formidable:/usr/local/lib/node_modules/formidable' '~/n8n_dir/node_modules/fs-extra:/usr/local/lib/node_modules/fs-extra' '~/n8n_dir/node_modules/ftp:/usr/local/lib/node_modules/ftp' '~/n8n_dir/node_modules/get-uri:/usr/local/lib/node_modules/get-uri' '~/n8n_dir/node_modules/getpass:/usr/local/lib/node_modules/getpass' '~/n8n_dir/node_modules/graceful-fs:/usr/local/lib/node_modules/graceful-fs' '~/n8n_dir/node_modules/har-schema:/usr/local/lib/node_modules/har-schema' '~/n8n_dir/node_modules/har-validator:/usr/local/lib/node_modules/har-validator' '~/n8n_dir/node_modules/has-flag:/usr/local/lib/node_modules/has-flag' '~/n8n_dir/node_modules/htmlparser2:/usr/local/lib/node_modules/htmlparser2' '~/n8n_dir/node_modules/http-context:/usr/local/lib/node_modules/http-context' '~/n8n_dir/node_modules/http-errors:/usr/local/lib/node_modules/http-errors' '~/n8n_dir/node_modules/http-incoming:/usr/local/lib/node_modules/http-incoming' '~/n8n_dir/node_modules/http-outgoing:/usr/local/lib/node_modules/http-outgoing' '~/n8n_dir/node_modules/http-proxy-agent:/usr/local/lib/node_modules/http-proxy-agent' '~/n8n_dir/node_modules/http-signature:/usr/local/lib/node_modules/http-signature' '~/n8n_dir/node_modules/https-proxy-agent:/usr/local/lib/node_modules/https-proxy-agent' '~/n8n_dir/node_modules/iconv-lite:/usr/local/lib/node_modules/iconv-lite' '~/n8n_dir/node_modules/inherits:/usr/local/lib/node_modules/inherits' '~/n8n_dir/node_modules/ip:/usr/local/lib/node_modules/ip' '~/n8n_dir/node_modules/is-browser:/usr/local/lib/node_modules/is-browser' '~/n8n_dir/node_modules/is-typedarray:/usr/local/lib/node_modules/is-typedarray' '~/n8n_dir/node_modules/is-url:/usr/local/lib/node_modules/is-url' '~/n8n_dir/node_modules/isarray:/usr/local/lib/node_modules/isarray' '~/n8n_dir/node_modules/isobject:/usr/local/lib/node_modules/isobject' '~/n8n_dir/node_modules/isstream:/usr/local/lib/node_modules/isstream' '~/n8n_dir/node_modules/jsbn:/usr/local/lib/node_modules/jsbn' '~/n8n_dir/node_modules/json-schema:/usr/local/lib/node_modules/json-schema' '~/n8n_dir/node_modules/json-schema-traverse:/usr/local/lib/node_modules/json-schema-traverse' '~/n8n_dir/node_modules/json-stringify-safe:/usr/local/lib/node_modules/json-stringify-safe' '~/n8n_dir/node_modules/jsonfile:/usr/local/lib/node_modules/jsonfile' '~/n8n_dir/node_modules/jsprim:/usr/local/lib/node_modules/jsprim' '~/n8n_dir/node_modules/koa-is-json:/usr/local/lib/node_modules/koa-is-json' '~/n8n_dir/node_modules/levn:/usr/local/lib/node_modules/levn' '~/n8n_dir/node_modules/lodash:/usr/local/lib/node_modules/lodash' '~/n8n_dir/node_modules/lodash.assignin:/usr/local/lib/node_modules/lodash.assignin' '~/n8n_dir/node_modules/lodash.bind:/usr/local/lib/node_modules/lodash.bind' '~/n8n_dir/node_modules/lodash.defaults:/usr/local/lib/node_modules/lodash.defaults' '~/n8n_dir/node_modules/lodash.filter:/usr/local/lib/node_modules/lodash.filter' '~/n8n_dir/node_modules/lodash.flatten:/usr/local/lib/node_modules/lodash.flatten' '~/n8n_dir/node_modules/lodash.foreach:/usr/local/lib/node_modules/lodash.foreach' '~/n8n_dir/node_modules/lodash.map:/usr/local/lib/node_modules/lodash.map' '~/n8n_dir/node_modules/lodash.merge:/usr/local/lib/node_modules/lodash.merge' '~/n8n_dir/node_modules/lodash.pick:/usr/local/lib/node_modules/lodash.pick' '~/n8n_dir/node_modules/lodash.reduce:/usr/local/lib/node_modules/lodash.reduce' '~/n8n_dir/node_modules/lodash.reject:/usr/local/lib/node_modules/lodash.reject' '~/n8n_dir/node_modules/lodash.some:/usr/local/lib/node_modules/lodash.some' '~/n8n_dir/node_modules/lru-cache:/usr/local/lib/node_modules/lru-cache' '~/n8n_dir/node_modules/media-typer:/usr/local/lib/node_modules/media-typer' '~/n8n_dir/node_modules/methods:/usr/local/lib/node_modules/methods' '~/n8n_dir/node_modules/mime:/usr/local/lib/node_modules/mime' '~/n8n_dir/node_modules/mime-db:/usr/local/lib/node_modules/mime-db' '~/n8n_dir/node_modules/mime-types:/usr/local/lib/node_modules/mime-types' '~/n8n_dir/node_modules/monotonic-timestamp:/usr/local/lib/node_modules/monotonic-timestamp' '~/n8n_dir/node_modules/ms:/usr/local/lib/node_modules/ms' '~/n8n_dir/node_modules/negotiator:/usr/local/lib/node_modules/negotiator' '~/n8n_dir/node_modules/netmask:/usr/local/lib/node_modules/netmask' '~/n8n_dir/node_modules/nth-check:/usr/local/lib/node_modules/nth-check' '~/n8n_dir/node_modules/oauth-sign:/usr/local/lib/node_modules/oauth-sign' '~/n8n_dir/node_modules/object-assign:/usr/local/lib/node_modules/object-assign' '~/n8n_dir/node_modules/on-finished:/usr/local/lib/node_modules/on-finished' '~/n8n_dir/node_modules/optionator:/usr/local/lib/node_modules/optionator' '~/n8n_dir/node_modules/pac-proxy-agent:/usr/local/lib/node_modules/pac-proxy-agent' '~/n8n_dir/node_modules/pac-resolver:/usr/local/lib/node_modules/pac-resolver' '~/n8n_dir/node_modules/parseurl:/usr/local/lib/node_modules/parseurl' '~/n8n_dir/node_modules/performance-now:/usr/local/lib/node_modules/performance-now' '~/n8n_dir/node_modules/prelude-ls:/usr/local/lib/node_modules/prelude-ls' '~/n8n_dir/node_modules/process-nextick-args:/usr/local/lib/node_modules/process-nextick-args' '~/n8n_dir/node_modules/promise-polyfill:/usr/local/lib/node_modules/promise-polyfill' '~/n8n_dir/node_modules/proxy-agent:/usr/local/lib/node_modules/proxy-agent' '~/n8n_dir/node_modules/proxy-from-env:/usr/local/lib/node_modules/proxy-from-env' '~/n8n_dir/node_modules/psl:/usr/local/lib/node_modules/psl' '~/n8n_dir/node_modules/punycode:/usr/local/lib/node_modules/punycode' '~/n8n_dir/node_modules/qs:/usr/local/lib/node_modules/qs' '~/n8n_dir/node_modules/querystring:/usr/local/lib/node_modules/querystring' '~/n8n_dir/node_modules/raw-body:/usr/local/lib/node_modules/raw-body' '~/n8n_dir/node_modules/readable-stream:/usr/local/lib/node_modules/readable-stream' '~/n8n_dir/node_modules/request:/usr/local/lib/node_modules/request' '~/n8n_dir/node_modules/request-promise:/usr/local/lib/node_modules/request-promise' '~/n8n_dir/node_modules/request-promise-core:/usr/local/lib/node_modules/request-promise-core' '~/n8n_dir/node_modules/request-x-ray:/usr/local/lib/node_modules/request-x-ray' '~/n8n_dir/node_modules/safe-buffer:/usr/local/lib/node_modules/safe-buffer' '~/n8n_dir/node_modules/safer-buffer:/usr/local/lib/node_modules/safer-buffer' '~/n8n_dir/node_modules/selectn:/usr/local/lib/node_modules/selectn' '~/n8n_dir/node_modules/setprototypeof:/usr/local/lib/node_modules/setprototypeof' '~/n8n_dir/node_modules/sliced:/usr/local/lib/node_modules/sliced' '~/n8n_dir/node_modules/smart-buffer:/usr/local/lib/node_modules/smart-buffer' '~/n8n_dir/node_modules/socks:/usr/local/lib/node_modules/socks' '~/n8n_dir/node_modules/socks-proxy-agent:/usr/local/lib/node_modules/socks-proxy-agent' '~/n8n_dir/node_modules/source-map:/usr/local/lib/node_modules/source-map' '~/n8n_dir/node_modules/sshpk:/usr/local/lib/node_modules/sshpk' '~/n8n_dir/node_modules/statuses:/usr/local/lib/node_modules/statuses' '~/n8n_dir/node_modules/stealthy-require:/usr/local/lib/node_modules/stealthy-require' '~/n8n_dir/node_modules/stream-to-string:/usr/local/lib/node_modules/stream-to-string' '~/n8n_dir/node_modules/string-format:/usr/local/lib/node_modules/string-format' '~/n8n_dir/node_modules/string_decoder:/usr/local/lib/node_modules/string_decoder' '~/n8n_dir/node_modules/superagent:/usr/local/lib/node_modules/superagent' '~/n8n_dir/node_modules/superagent-proxy:/usr/local/lib/node_modules/superagent-proxy' '~/n8n_dir/node_modules/supports-color:/usr/local/lib/node_modules/supports-color' '~/n8n_dir/node_modules/toidentifier:/usr/local/lib/node_modules/toidentifier' '~/n8n_dir/node_modules/torrent-search-api:/usr/local/lib/node_modules/torrent-search-api' '~/n8n_dir/node_modules/tough-cookie:/usr/local/lib/node_modules/tough-cookie' '~/n8n_dir/node_modules/tslib:/usr/local/lib/node_modules/tslib' '~/n8n_dir/node_modules/tunnel-agent:/usr/local/lib/node_modules/tunnel-agent' '~/n8n_dir/node_modules/tweetnacl:/usr/local/lib/node_modules/tweetnacl' '~/n8n_dir/node_modules/type-check:/usr/local/lib/node_modules/type-check' '~/n8n_dir/node_modules/type-is:/usr/local/lib/node_modules/type-is' '~/n8n_dir/node_modules/universalify:/usr/local/lib/node_modules/universalify' '~/n8n_dir/node_modules/unpipe:/usr/local/lib/node_modules/unpipe' '~/n8n_dir/node_modules/uri-js:/usr/local/lib/node_modules/uri-js' '~/n8n_dir/node_modules/util:/usr/local/lib/node_modules/util' '~/n8n_dir/node_modules/util-deprecate:/usr/local/lib/node_modules/util-deprecate' '~/n8n_dir/node_modules/uuid:/usr/local/lib/node_modules/uuid' '~/n8n_dir/node_modules/vary:/usr/local/lib/node_modules/vary' '~/n8n_dir/node_modules/verror:/usr/local/lib/node_modules/verror' '~/n8n_dir/node_modules/word-wrap:/usr/local/lib/node_modules/word-wrap' '~/n8n_dir/node_modules/wrap-fn:/usr/local/lib/node_modules/wrap-fn' '~/n8n_dir/node_modules/x-ray:/usr/local/lib/node_modules/x-ray' '~/n8n_dir/node_modules/x-ray-crawler:/usr/local/lib/node_modules/x-ray-crawler' '~/n8n_dir/node_modules/x-ray-parse:/usr/local/lib/node_modules/x-ray-parse' '~/n8n_dir/node_modules/x-ray-scraper:/usr/local/lib/node_modules/x-ray-scraper' '~/n8n_dir/node_modules/xregexp:/usr/local/lib/node_modules/xregexp' '~/n8n_dir/node_modules/yallist:/usr/local/lib/node_modules/yallist' '~/n8n_dir/node_modules/yieldly:/usr/local/lib/node_modules/yieldly' image: 'n8nio/n8n:latest-rpi' environment: N8N_BASIC_AUTH_ACTIVE=true N8N_BASIC_AUTH_USER=username N8N_BASIC_AUTH_PASSWORD=your_secret_n8n_password EXECUTIONS_DATA_PRUNE=true EXECUTIONS_DATA_MAX_AGE=120 EXECUTIONS_TIMEOUT=300 EXECUTIONS_TIMEOUT_MAX=500 GENERIC_TIMEZONE=Europe/Berlin NODE_FUNCTION_ALLOW_EXTERNAL=torrent-search-api Once configured this way run n8n and create a new workflow coping the one proposed. Configure workflow Transmission In order to send command to transmission you must validate the Basic Auth. To do so: open the Start download node and edit the Credentials. Perform the same operation choosing the new credentials also in node Start download new token. In this automation we call transmission twice due to a security protocol in transmission system that prevents single click commands to be triggered, performing the request twice bypasses this security mechanism. https://en.wikipedia.org/wiki/Cross-site_request_forgery We use the X-Transmission-Session-Id provided by the first request to authenticate the second request. Telegram In order to make the workflow work as expected you must create a telegram bot and configure the nodes (Torrent not found and Telegram1) to send your message once the workflow is complete. Here's an easy guide to follow https://docs.n8n.io/nodes/n8n-nodes-base.telegram/ In those nodes you also should configure the Chat ID, you may use your telegram username or use a bot to retrieve your id. You may chat with useridinfobot that sends you your id. Ok google automation Since right now we do not have a n8n client for mobile that can trigger automation using google assistant I decided to use an IFTTT automation to trigger the webhook. I connect my IFTTT account with google assistant and pick the trigger. Say a phrase with a text ingredient as in the picture below. And configure the trigger this way. scarica $ -> download $ or metti in download $ -> put in download $ or some other trigger you may want. Then configure your server to trigger the webhook of n8n. Conclusion In conclusion we provide a fully working automation that integrates in n8n a node library and provides an easy trigger to perform a complex operation. Security concern Giving the ability to trigger a download may be problematic for potential unwanted torrent malware download, so you may decide to authenticate the webhook request passing in the body another field with a shared token between the two endpoints. Moreover the torrent-search-api library and its dependencies have some vulnerability that you may want to avoid on your own media-center, this will hopefully be patched soon in a further release of the library. This is just an interesting proof of concept. Quality of the download You may want to introduce another block between torrent search and webhook trigger to search for a movie based on the words detected by google assistant, sometimes it misinterprets something and you may end up downloading potential copyrighted material. Please use this automation only for free and open source movies and music.
by Oneclick AI Squad
An AI-powered email marketing automation workflow that generates personalized marketing emails using data from Google Sheets and delivers them directly to clients. This workflow combines the power of AI content generation with spreadsheet-based campaign management for seamless email marketing automation. What's the Goal? Automatically pull marketing offer details from Google Sheets (Sheet 1) Fetch client information from Google Sheets (Sheet 2) Use AI to generate compelling, personalized marketing content Format emails with professional structure and personalization Send targeted marketing emails directly to clients Enable scalable email marketing campaigns with minimal manual effort By the end, you'll have a fully automated email marketing system that creates and sends personalized campaigns based on your spreadsheet data. Why Does It Matter? Manual email marketing is labor-intensive and lacks personalization at scale. Here's why this workflow is a game changer: Zero Manual Drafting**: AI generates unique content for each recipient Data-Driven Personalization**: Leverages spreadsheet data for targeted messaging Scalable Campaigns**: Handle hundreds of clients with a single workflow execution Consistent Quality**: AI ensures professional, engaging content every time Time Efficiency**: Transform hours of work into minutes of automation Cost-Effective**: Reduce marketing team workload while increasing output Think of it as your intelligent marketing assistant that creates personalized campaigns at enterprise scale. How It Works Here's the step-by-step process behind the automation: Step 1: Track Offer Updates Node**: Track Offer Sheet Updates (Sheet 1) Function**: Monitor Google Sheets for new marketing offers or updates Trigger**: Automatically activates when new data is added to Sheet 1 Step 2: Generate Marketing Content Node**: Generate Marketing Content with AI Function**: Process offer details through AI model (Llama 3.2) Process**: Creates compelling marketing copy based on offer parameters Step 3: Fetch Client Information Node**: Fetch Client List (Sheet 2) Function**: Retrieve client names and email addresses from Sheet 2 Data**: Pulls client_name and client_email for personalization Step 4: Content Personalization Node**: Format Personalized Email Function**: Combine AI-generated content with client-specific data Output**: Creates personalized email for each recipient Step 5: Email Delivery Node**: Send Marketing Email to Client Function**: Deliver personalized emails directly to client inboxes Method**: Uses Gmail integration for professional delivery Google Sheets Structure Sheet 1: Marketing Offer Details | Column | Description | Example | |--------|-------------|---------| | title | Campaign/offer name | "Summer Sale 2024" | | discount | Discount percentage or amount | "25% OFF" | | validity | Offer expiration date | "Valid until July 31st" | | products_included | Items covered by offer | "All summer collection" | | original_price | Pre-discount pricing | "$199.99" | | discounted_price | Final pricing | "$149.99" | | cta | Call-to-action text | "Shop Now" | | bonus | Additional incentives | "Free shipping included" | Sheet 2: Client Information | Column | Description | Example | |--------|-------------|---------| | client_name | Customer's full name | "John Smith" | | client_email | Customer's email address | "john.smith@email.com" | How to Use the Workflow Prerequisites Google Sheets Setup: Create two sheets with the required column structure n8n Account: Access to n8n workflow platform Gmail API: Gmail account with API access configured AI Model Access: Llama 3.2 API credentials Importing the Workflow in n8n Step 1: Obtain the Workflow JSON Download the workflow file or copy the JSON code Ensure you have the complete workflow configuration Step 2: Access n8n Workflow Editor Log in to your n8n instance (Cloud or self-hosted) Navigate to the Workflows section Click "Add Workflow" to create a new workflow Step 3: Import the Workflow Option A: Import from Clipboard Click the three dots (⋯) in the top-right corner Select "Import from Clipboard" Paste the JSON code into the text box Click "Import" to load the workflow Option B: Import from File Click the three dots (⋯) in the top-right corner Select "Import from File" Choose the .json file from your computer Click "Open" to import the workflow Configuration Setup Google Sheets Integration Authenticate Google Sheets: Connect your Google account in n8n Configure Sheet 1: Set spreadsheet ID and range for marketing offers Configure Sheet 2: Set spreadsheet ID and range for client information AI Model Configuration Set API Credentials: Configure Llama 3.2 API key and endpoint Customize Prompts: Adjust AI prompts for your brand voice and style Set Content Parameters: Define content length, tone, and structure Gmail Integration Gmail API Setup: Enable Gmail API in Google Cloud Console OAuth Configuration: Set up OAuth credentials for email sending Sender Configuration: Configure sender name and email address Content Customization Email Templates: Customize email structure and branding Personalization Fields: Map spreadsheet columns to email variables Brand Guidelines: Set company colors, fonts, and messaging tone Workflow Execution Manual Execution Click "Execute Workflow" in the n8n interface Monitor execution progress through each node Review generated content and delivery status Automated Execution Set up triggers based on sheet updates Configure scheduling for regular campaign runs Enable webhook triggers for real-time processing Best Practices Data Management Keep spreadsheet data clean and formatted consistently Regular validation of email addresses in Sheet 2 Update offer details promptly in Sheet 1 Content Quality Review AI-generated content periodically Adjust prompts based on campaign performance Maintain consistent brand voice across campaigns Deliverability Monitor email bounce rates and engagement metrics Maintain clean email lists with valid addresses Follow email marketing best practices and regulations Performance Optimization Batch process large client lists for efficiency Monitor workflow execution times Implement error handling and retry mechanisms Troubleshooting Common Issues Authentication Errors**: Verify API credentials and permissions Sheet Access**: Ensure proper sharing permissions for Google Sheets Email Delivery**: Check Gmail API quotas and sending limits AI Processing**: Monitor API rate limits and response times Error Handling Implement retry logic for failed operations Set up notification systems for workflow failures Maintain backup data sources for critical campaigns Security Considerations Use environment variables for API keys and credentials Implement proper access controls for sensitive data Regular security audits of connected services Compliance with data protection regulations (GDPR, CAN-SPAM) Conclusion This Smart Email Marketing Generator transforms your marketing campaigns from manual, time-consuming tasks into automated, intelligent processes. By leveraging AI and spreadsheet data, you can create personalized, engaging campaigns that scale with your business needs while maintaining professional quality and consistency. The workflow represents a significant advancement in marketing automation, combining the accessibility of spreadsheet-based data management with the power of AI-driven content generation and automated delivery systems.