by Marth
How it works This workflow runs on a daily schedule. It starts by scraping real estate-related queries from Google using Apify. The organic search results are parsed and summarized into a single text block. That text is then sent to an AI model (GPT-4o) which extracts the top 3 pain points faced by real estate agents based on current online sentiment. The workflow compares today's insights with yesterday's data stored in Airtable to detect recurring or new pain points. Finally, it sends a summary notification via Telegram and stores the current day's insights into Airtable for trend tracking. How to set up Clone or import the workflow into your n8n instance. Get an Apify API token and insert it into the HTTP Request node. Create an Airtable base with a table containing two fields: "Date" (text) and "Summary" (long text). Copy the Base ID and Table ID into the Airtable nodes. Connect your Telegram bot and replace the chat ID in the Telegram node. Set up OpenAI credentials with GPT-4o or GPT-4o-mini for the LLM node. Run once manually to test, then activate the schedule trigger to run daily. (Optional) Extend the flow to generate cold outreach emails based on pain points, or sync to Notion/CRM.
by Jimleuk
This n8n template leverages n8n's multi-form feature to build a 2 part job application submission journey which aims to eliminate the need for applicants to re-enter data found on their CVs/Resumes. How it works The application submission process starts with an n8n form trigger to accept CV files in the form of PDFs. The PDF is validated using the text classifier node to determine if it is a valid CV else the applicant is asked to reupload. A basic LLM node is used to extract relevant information from the CV as data capture. A copy of the original job post is included to ensure relevancy. Applicant's data is then sent to an ATS for processing. For our demo, we used airtable because we could attach PDFs to rows. Finally, a second form trigger is used for the actual application form. However, it is prefilled to save the applicant's time and allow them to amend any of the generated application fields. How to use Ensure to change the redirect URL in the form ending node to use the host domain of your n8n instance. Requirements OpenAI for LLM Airtable to capture applicant data Customising the workflow Application form is pretty basic for this demonstration but could be extended to ask more in-depth questions. If it fits the job, why not ask applicants to upload portfolio works and have AI describe/caption them.
by Nathan Lee
How it works Automates the retrieval of Calvin and Hobbes daily comics. Extracts the comic image URL from the website. Translates comic dialogues to English and Korean. Posts the comic and translations to Discord daily. Set up steps Estimated setup time: ~10-15 minutes. Use a Schedule Trigger to automate the workflow at 9 AM daily. Add nodes for parameter setup, HTTP request, data extraction, and integration with Discord. Add detailed notes to each node in the workflow for easy understanding.
by Leonardo Grigorio
Youtube Video This n8n workflow is designed to assist YouTube content creators in identifying trending topics within a specific niche. By leveraging YouTube's search and data APIs, it gathers and analyzes video performance metrics from the past two days to provide insights into what content is gaining traction. Here's how the workflow operates: Trigger Setup: The workflow begins when a user sends a query through the chat_message_received node. If no niche is provided, the AI prompts the user to select or input one. AI Agent (Language Model): The central node utilizes a GPT-based AI agent to: Understand the user's niche or content preferences. Generate tailored search terms related to the niche. Process YouTube API responses and summarize trends using insights such as common themes, tags, and audience engagement metrics (views, likes, and comments). YouTube Search: The youtube_search node runs a secondary workflow to query YouTube for relevant videos published within the last two days. It retrieves basic video data such as video IDs, relevance scores, and publication dates. Video Details Retrieval: The workflow fetches additional details for each video: Video Snippet: Metadata like title, description, and tags. Video Statistics: Metrics such as views, likes, and comments. Content Details: Video duration, ensuring only content longer than 3 minutes and 30 seconds is analyzed. Data Processing: Video metadata is cleaned, sanitized, and stored in memory. Tags, titles, and descriptions are analyzed to identify patterns and trends across multiple videos. Output: The workflow compiles insights and presents them to the user, highlighting: The most common themes or patterns within the niche. URLs to trending videos and their respective channels. Engagement statistics, helping the user understand the popularity of the content. Key Notes for Setup: API Keys**: Ensure valid YouTube API credentials are configured in the get_videos, find_video_snippet, find_video_statistics, and find_video_data nodes. Memory Buffer**: The window_buffer_memory node ensures the AI agent retains context during analysis, enhancing the quality of the generated insights. Search Term Customization**: The AI agent dynamically creates search terms based on the user’s niche to improve search precision. Use Case: This workflow is ideal for YouTubers or marketers seeking data-driven inspiration for creating content that aligns with current trends, maximizing the potential to engage their audience. Example Output: For the niche "digital marketing": Trending Topic: Videos about "mental triggers" and "psychological marketing." Tags: "SEO," "Conversion Rates," "Social Proof." Engagement: Videos with over 200K views and high likes/comment ratios are leading trends. Video links: https://www.youtube.com/watch?v=video_id1 https://www.youtube.com/watch?v=video_id2
by Floyd Mahou
How it works • Allows users to manage their Google Calendar via WhatsApp using natural language • Handles event creation, updates, deletions, availability checks, and agenda overviews • AI agent interprets the user’s message and triggers the appropriate calendar action • Responses are sent back to the user via WhatsApp, with confirmation or schedule info Set up steps • Set up a WhatsApp Business Cloud account and configure your webhook • Connect your Google Calendar using n8n credentials • Deploy OpenAI API key for natural language understanding • Link each calendar action (create, update, delete, search) to the TimePilot agent • Customize confirmation messages and automate reply formatting Note: More detailed configuration and custom logic are described inside sticky notes within the workflow.
by Marcelo Abreu
What this workflow does Runs automatically every Monday morning at 8 AM Collects your Meta Ads data from the last 7 days for a given account (date range is configurable) Formats the data, aggregating it at the campaign, ad set, and ad levels Generates AI-driven analysis and insights on your results, providing actionable recommendations Renders the report as a visually appealing PDF with charts and tables Sends the report via Slack (you can also add email or WhatsApp) A sample for the first page of the report: Setup Guide Create an account of pdforge and use the pre-made Meta Ads template. Connect Meta Ads, OpenAI and Slack to n8n Set your Ad Account Id and date range (choose from 'last_7d', 'last_14d', 'last30d') (opcional) Customize the scheduling date and time Requirements Meta Ads (via Facebook Graph API): Documentation pdforge access: Integration guide AI API access (e.g. via OpenAI, Anthropic, Google or Ollama) Slack acces (via OAuth2): Documentation Feel free to contact me via Linkedin, if you have any questions! 👋🏻
by Federico De Ponte
🔁 Loop & Optimize Meta Tags with Google Gemini This workflow automates the shortening of meta titles and descriptions for SEO—directly from your Google Sheet, row by row, using Google Gemini. ✅ What it does Reads rows from a Google Sheet (meta_title, meta_description, row_index) Loops through each row and checks if content exists Sends the data to Google Gemini for length-optimized output Cleans and parses the response Updates the original sheet with the shortened results 🛠️ Setup Requirements Google Sheets (OAuth2 credentials connected in n8n) Google Gemini API key (configured in n8n credentials) Sheet must contain: row_index meta_title meta_description Output will be written into: meta_titleFixed meta_descriptionFixed
by David Olusola
🤖 AI-Powered Lead Enrichment with Explorium MCP & Telegram Who it's for Sales reps, agencies, and growth teams who want to turn basic company info into qualified leads with automated research . Perfect for B2B prospecting. What it does This workflow lets you send a company name or domain via Telegram, and instantly returns: ✅ Enriched company profile (industry, size, tech, pain points) ✅ A clean, structured JSON — ready for your CRM or sales tools How it works 💬 Send company info to your Telegram bot 🔎 Workflow pulls data from Explorium MCP + Tavily 🧠 AI analyzes model, tools, pain points & goals 📤 JSON response sent back via Telegram or logged to your database Requirements 🔐 OpenAI API (GPT-4) 🧠 Explorium MCP API 🌐 Tavily Web Search API 🤖 Telegram Bot API 🗃️ PostgreSQL (for memory/logging) How to set up Add API keys in n8n Connect Telegram bot to webhook Set up PostgreSQL for memory persistence Customize prompts (tone, niche, etc.) Test by sending a company name via Telegram Customization Options 🎯 Focus enrichment on specific industries or keywords 💬 Adjust the email sequence structure & style 🧩 Add extra data sources (e.g. Clearbit, Crunchbase) 🧾 Format JSON to match your CRM schema ⚙️ Add approval step before sending emails Highlights ✅ Uses multi-source enrichment ✅ Works 100% from Telegram ✅ Integrates into any sales pipeline
by Matt Chong
Who is this for? This workflow is ideal for: For freelancers, business owners, and finance teams who receive receipts via Gmail Automatically logs expenses for tax, bookkeeping and year-end audits What problem is this workflow solving? When tax season hits, missing receipts create panic. This workflow keeps everything in one place. It uses AI to extract details from Gmail attachments, logs them in a Google Sheet, and stores the PDFs in Google Drive. No digging. No copying. Just everything where it should be. How it works? Apply the label receipt to any incoming Gmail email. Do not mark it as read. On a schedule (e.g. daily at 8:00 AM), the workflow triggers. It searches for unread emails with the label receipt. For each matching email, it downloads the attached receipt file. It extracts text content from the receipt file. It uploads the original receipt file to a specified folder in Google Drive. It merges the extracted text with email metadata. It sends this combined data to OpenAI. OpenAI extracts structured fields: date merchant category description subtotal tax total The extracted data is appended as a new row in the specific Google Sheet. Finally, the email is marked as read to prevent it from being processed again. How to set up? Connect these services in your n8n credentials: Gmail (OAuth2) Google Drive Google Sheets OpenAI Configure the Google Drive upload: In the “Upload File” node, select the target folder where you want receipt PDFs stored. Set your execution schedule: Open the “Schedule Trigger” node and choose when it should run (default is once daily at 8:00 AM). Choose your Google Sheet and tab: In the “Append to Google Sheet” node, select your document and tab Ensure the sheet contains these columns: Date, Merchant, Category, Description, Subtotal, Tax, Total. How to customize this workflow to your needs? Change the Gmail label or search filter** to match your needs. Modify the OpenAI schema** to extract additional fields like currency, project, or notes.
by Solomon
This n8n template demonstrates how to obtain token usage from AI Agents and places the data into a spreadsheet that calculates the estimated cost of the execution. Obtaining the token usage from AI Agents is tricky, because it doesn't provide all the data from tool calls. This workflow taps into the workflow execution metadata to extract token usage information. Works well with OpenAI, Google and Anthropic. Other LLM providers might need small tweaks. How it works The AI Agent executes and then calls a subworkflow to calculate the token usage. The data is stored in Google Sheets The spreadsheet has formulas to calculate the estimated cost of the execution. How to use The AI Agent is used as an example. Feel free to replace this with other agents you have. Call the subworkflow AFTER all the other branches have finished executing. Requirements LLM account (OpenAI, Gemini...) for API usage. Google Drive and Sheets credentials n8n API key of your instance
by Jimleuk
This n8n workflow demonstrates how to create a really simple yet effective customer support channel and pipeline by combining Slack, Linear and AI tools. Built on n8n's ability to integrate anything, this workflow is intended for small support teams who want to maximise re-use of the tools they already have with an interface which is doesn't require any onboarding. Read the blog post here: https://blog.n8n.io/automated-customer-support-tickets-with-n8n-slack-linear-and-ai/ How it works The workflow is connected to a slack channel setup with the customer to capture support issues. Only messages which are tagged with a "✅" reaction are captured by the workflow. Messages are tagged by the support team in the channel. Each captured support issue is sent to the AI model to classify, prioritise and rewrite into a support ticket. The generated support ticket is uploaded to Linear for the support team to investigate and track. Support team is able to report back to the user via the channel when issue is fixed. Requirements Slack channel to be monitored Linear account and project Customising this workflow Don't have Linear? This workflow can work just as well with traditional ticketing systems like JIRA.
by Sidetool
Hello there! This is a supporting workflow for an Airtable Base that handles Recurring Tasks. The objective of the workflow is to handle creating tasks on a recurring basis depending on the Airtable Setup You can access that Airtable Template here for complete context- Airtable Universe The functionality of the workflow can be easliy adapted to any data source. Feel free to contact us with any doubts or questions at http://sidetool.co Use this as is, or adapted to your existing Airtable Base – embrace automated simplicity! 🚀🌟