by Mihai Farcas
This n8n workflow automates the process of saving web articles or links shared in a chat conversation directly into a Notion database, using Google's Gemini AI and Browserless for web scraping. Who is this AI automation template for? It's useful for anyone wanting to reduce manual copy-pasting and organize web findings seamlessly within Notion. A smarter web clipping tool! What this AI automation workflow does Starts when a message is received Uses a Google Gemini AI Agent node to understand the context and manage the subsequent steps. It identifies if a message contains a request to save an article/link. If a URL is detected, it utilizes a tool configured with the Browserless API (via the HTTP Request node) to scrape the content of the web page. Creates a new page in a specified Notion database, populating it with thea summary scraped content, in a specific format, never leaving out any important details. It also saves the original URL, smart tags, publication date, and other metadata extracted by the AI. Posts a confirmation message (e.g., to a Discord channel) indicating whether the article was saved successfully or if an error occurred. Setup Import Workflow: Import this template into your n8n instance. Configure Credentials & Notion Database: Notion Database: Create or designate a Notion database (like the example "Knowledge Database") where articles will be saved. Ensure this database has the following properties (fields): Name (Type: Text) - This will store the article title. URL (Type: URL) - This will store the original article link. Description (Type: Text) - This can store the AI-generated summary. Tags (Type: Multi-select) - Optional, for categorization. Publication Date (Type: Date) - *Optional, store the date the article was published. Ensure the n8n integration has access to this specific database. If you require a different format to the Notion Database, not that you will have to update the Notion tool configuration in this n8n workflow accordingly. Notion Credential: Obtain your Notion API key and add it as a Notion credential in n8n. Select this credential in the save_to_notion tool node. Configure save_to_notion Tool: In the save_to_notion tool node within the workflow, set the 'Database ID' field to the ID of the Notion database you prepared above. Map the workflow data (URL, AI summary, etc.) to the corresponding database properties (URL, Description, etc.). In the blocks section of the notion tool, you can define a custom format for the research page, allowing the AI to fill in the exact details you want extracted from any web page! Google Gemini AI: Obtain your API key from Google AI Studio or Google Cloud Console (if using Vertex AI) and add it as a credential. Select this credential in the "Tools Agent" node. Discord (or other notification service): If using Discord notifications, create a Webhook URL (instructions) or set up a Bot Token. Add the credential in n8n and select it in the discord_notification tool node. Configure the target Channel ID. Browserless/HTTP Request: Cloud: Obtain your API key from Browserless and configure the website_scraper HTTP Request tool node with the correct API endpoint and authentication header. Self-Hosted: Ensure your Browserless Docker container is running and accessible by n8n. Configure the website_scraper HTTP Request tool node with your self-hosted Browserless instance URL. Activate Workflow: Save test and activate the workflow. How to customize this workflow to your needs Change AI Model:** Experiment with different AI models supported by n8n (like OpenAI GPT models or Anthropic Claude) in the Agent node if Gemini 2.5 Pro doesn't fit your needs or budget, keeping in mind potential differences in context window size and processing capabilities for large content. Modify Notion Saving:** Adjust the save_to_notion tool node to map different data fields (e.g., change the summary style by modifying the AI prompt, add specific tags, or alter the page content structure) to your Notion database properties. Adjust Scraping:** Modify the prompt/instructions for the website_scraper tool or change the parameters sent to the Browserless API if you need different data extracted from the web pages. You could also swap Browserless for another scraping service/API accessible via the HTTP Request node.
by Leonard
Who is this for? This workflow is designed for SEO specialists, content creators, marketers, and website developers who want to ensure their web content is easily accessible, understandable, and indexable by Large Language Models (LLMs) like ChatGPT, Perplexity, and Google AI Overviews. If you're looking to optimize your site for the evolving AI-driven search landscape, this template is for you. What problem is this workflow solving? / Use case Modern AI tools often crawl websites without executing JavaScript. This can lead to them "seeing" a very different version of your page than a human user or traditional search engine bot might. This workflow helps you: Identify how much of your content is visible without JavaScript. Check for crucial on-page SEO elements that AI relies on (headings, meta descriptions, structured data). Detect if your site presents JavaScript-blocking warnings. Get an AI-generated readability score and actionable recommendations to improve AI-friendliness. What this workflow does Receives a URL via a chat interface. Sanitizes the input URL to ensure it's correctly formatted. Fetches the website's HTML content, simulating a non-JavaScript crawler (like Googlebot). Extracts key HTML features: visible text length, presence of H1/H2/H3 tags, meta description, Open Graph data, structured data (JSON-LD), and <noscript> tags. It also checks for common JavaScript-blocking messages. Performs an AI SEO Analysis using an LLM (via OpenAI) based on the extracted features. Provides a report including an AI Readability Score (0-10), a summary, actionable recommendations, and a reminder to check the robots.txt file for AI bot access. Setup Estimated setup time:** 2-5 minutes. Import this workflow into your n8n instance. Ensure you have an OpenAI account and API key. Configure the "OpenAI Chat Model" node with your OpenAI API credentials. If you don't have credentials set up yet, create new ones in n8n. Activate the workflow. Interact with the chat interface provided by the "When chat message received" trigger node (you can access this via its webhook URL). How to customize this workflow to your needs Change LLM Model:** In the "OpenAI Chat Model" node, you can select a different model that suits your needs or budget. Adjust AI Prompt:** Modify the prompt in the "AI SEO Analysis" node (Chain Llm) to change the focus of the analysis or the format of the report. For example, you could ask for more technical details or a different scoring system. User-Agent:** The "Get HTML from Website" node uses a Googlebot User-Agent. You can change this to simulate other bots if needed. JS Block Indicators:** The "Extract HTML Features" node contains a list of common JavaScript-blocking phrases. You can expand this list with other languages or specific messages relevant to your checks.
by Obsidi8n
I am submitting this workflow for the Obsidian community to showcase the potential of integrating Obsidian with n8n. While straightforward, it serves as a compelling demonstration of the potential unlocked by integrating Obsidian with n8n. How it works This workflow lets you retrieve specific Airtable data you need in seconds, directly within your Obsidian note, using n8n. By highlighting a question in Obsidian and sending it to a webhook via the Post Webhook Plugin, you can fetch specific data from your Airtable base and instantly insert the response back into your note. The workflow leverages OpenAI’s GPT model to interpret your query, extract relevant data from Airtable, and format the result for seamless integration into your note. Set up steps Install the Post Webhook Plugin: Add this plugin to your Obsidian vault from the plugin store or GitHub. Set up the n8n Webhook: Copy the webhook URL generated in this workflow and insert it into the Post Webhook Plugin's settings in Obsidian. Configure Airtable Access: Link your Airtable account and specify the desired base and table to pull data from. Test the Workflow: Highlight a question in your Obsidian note, use the “Send Selection to Webhook” command, and verify that data is returned as expected.
by Niklas Hatje
Use Case In most companies, employees have a lot of great ideas. That was the same for us at n8n. We wanted to make it as easy as possible to allow everyone to add their ideas to some formatted database - it should be somewhere where everyone is all the time and could add a new idea without much extra effort. Since we're using Slack, this seemed to be the perfect place to easily add ideas and collect them in Notion. What this workflow does This workflow waits for a webhook call within Slack, that gets fired when users use the /idea command on a bot that you will create as part of this template. It then checks the command, adds the idea to Notion, and notifies the user about the newly added idea as you can see below: Creating your Slack bot Visit https://api.slack.com/apps, click on New App and choose a name and workspace. Click on OAuth & Permissions and scroll down to Scopes -> Bot token Scopes Add the chat:write scope Head over to Slash Commands and click on Create New Command Use /idea as the command Copy the test URL from the Webhook node into Request URL Add whatever feels best to the description and usage hint Go to Install app and click install Setup Add a Database in Notion with the columns Name and Creator Add your Notion credentials and add the integration to your Notion page. Fill the setup node below Create your Slack app (see other sticky) Click Test workflow and use the /idea comment in Slack Activate the workflow and exchange the Request URL with the production URL from the webhook How to adjust it to your needs You can adjust the table in Notion and for example, add different types of ideas or areas that they impact You might wanna add different templates in Notion to make it easier for users to fill their ideas with details Rename the Slack command as it works best for you How to enhance this workflow At n8n we use this workflow in combination with some others. E.g. we have the following things on top: We additionally have a /bug Slack command that adds a new bug to Linear. Here we're using AI to classify the bugs and move it to the right team. (see this template and this template) We also added other types, like /pain to be less solution-driven To make it easier for everyone to give input, we added a Votes column that allows everyone to vote on ideas/pain points in the list We're also running a workflow once a week that highlights the most popular new ideas and the most active voters (see here)
by Ria
This workflow demonstrates how to use the workflowStaticData() function to set any type of variable that will persist within workflow executions. https://docs.n8n.io/code/cookbook/builtin/get-workflow-static-data/ This can be useful for example when working with access tokens that expire after a certain time period. Using staticData we can keep a record of that access token and the expiry time and build our workflow logic around it. Important Static Data only persists across production executions, i.e. triggered by Webhooks or Schedule Triggers (not manual executions!) For this the workflow will have to be activated. Setup configure HTTP Request node to fetch access token from your API (optional) activate workflow test the workflow with the webhook production link you can check the population of the static data in the single executions Feedback If you found this useful or want to report some missing information - I'd be happy to hear from you at ria@n8n.io
by Guillaume Duvernay
Description This template provides a simple and powerful backend for adding speech-to-text capabilities to any application. It creates a dedicated webhook that receives an audio file, transcribes it using OpenAI's gpt-4o-mini model, and returns the clean text. To help you get started immediately, you'll find a complete, ready-to-use HTML code example right inside the workflow in a sticky note. This code creates a functional recording interface you can use for testing or as a foundation for your own design. Who is this for? Developers:** Quickly add a transcription feature to your application by calling this webhook from your existing frontend or backend code. No-code/Low-code builders:** Embed a functional audio recorder and transcription service into your projects by using the example code found inside the workflow. API enthusiasts:** A lean, practical example of how to use n8n to wrap a service like OpenAI into your own secure and scalable API endpoint. What problem does this solve? Provides a ready-made API:** Instantly gives you a secure webhook to handle audio file uploads and transcription processing without any server setup. Decouples frontend from backend:** Your application only needs to know about one simple webhook URL, allowing you to change the backend logic in n8n without touching your app's code. Offers a clear implementation pattern:** The included example code provides a working demonstration of how to send an audio file from a browser and handle the response—a pattern you can replicate in any framework. How it works This solution works by defining a clear API contract between your application (the client) and the n8n workflow (the backend). The client-side technique: Your application's interface records or selects an audio file. It then makes a POST request to the n8n webhook URL, sending the audio file as multipart/form-data. It waits for the response from the webhook, parses the JSON body, and extracts the value of the Transcript key. You can see this exact pattern in action in the example code provided in the workflow's sticky note. The n8n workflow (backend): The Webhook node catches the incoming POST request and grabs the audio file. The HTTP Request node sends this file to the OpenAI API. The Set node isolates the transcript text from the API's response. The Respond to Webhook node sends a clean JSON object ({"Transcript": "your text here..."}) back to your application. Setup Configure the n8n workflow: In the Transcribe with OpenAI node, add your OpenAI API credentials. Activate the workflow to enable the endpoint. Click the "Copy" button on the Webhook node to get your unique Production Webhook URL. Integrate with the frontend: Inside the workflow, find the sticky note labeled "Example Frontend Code Below". Copy the complete HTML from the note below it. ⚠️ Important: In the code you just copied, find the line const WEBHOOK_URL = 'YOUR WEBHOOK URL'; and replace the placeholder with the Production Webhook URL from n8n. Save the code as an HTML file and open it in your browser to test. Taking it further Save transcripts:* Add an *Airtable* or *Google Sheets** node to log every transcript that comes through the workflow. Error handling:** Enhance the workflow to catch potential errors from the OpenAI API and respond with a clear error message. Analyze the transcript:* Add a *Language Model** node after the transcription step to summarize the text, classify its sentiment, or extract key entities before sending the response.
by Gerald Denor
AI-Powered Proposal Generator - Sales Automation Workflow Overview This n8n workflow automates the entire proposal generation process using AI, transforming client requirements into professional, customized proposals delivered via email in seconds. Use Case Perfect for agencies, consultants, and sales teams who need to generate high-quality proposals quickly. Instead of spending hours writing proposals manually, this workflow captures client information through a web form and uses GPT-4 to generate contextually relevant, professional proposals. How It Works Form Trigger - Captures client information through a customizable web form OpenAI Integration - Processes form data and generates structured proposal content Google Drive - Creates a copy of your proposal template Google Slides - Populates the template with AI-generated content Gmail - Automatically sends the completed proposal to the client Key Features AI Content Generation**: Uses GPT-4 to create personalized proposal content Professional Templates**: Integrates with Google Slides for polished presentations Automated Delivery**: Sends proposals directly to clients via email Form Integration**: Captures all necessary client data through web forms Customizable Output**: Generates structured proposals with multiple sections Template Sections Generated Proposal title and description Problem summary analysis Three-part solution breakdown Project scope details Milestone timeline with dates Cost integration Requirements n8n instance** (cloud or self-hosted) OpenAI API key** for content generation Google Workspace account** for Slides and Gmail Basic n8n knowledge** for setup and customization Setup Complexity Intermediate - Requires API credentials setup and basic workflow customization Benefits Time Savings**: Reduces proposal creation from hours to minutes Consistency**: Ensures all proposals follow the same professional structure Personalization**: AI analyzes client needs for relevant content Automation**: Eliminates manual copy-paste and formatting work Scalability**: Handle multiple proposal requests simultaneously Customization Options Modify AI prompts for different industries or services Customize Google Slides template design Adjust form fields for specific information needs Personalize email templates and signatures Configure milestone templates for different project types Error Handling Includes basic error handling for API failures and form validation to ensure reliable operation. Security Notes All credentials have been removed from this template. Users must configure their own: OpenAI API credentials Google OAuth2 connections for Slides, Drive, and Gmail Form webhook configuration This workflow demonstrates practical AI integration in business processes and showcases n8n's capabilities for complex automation scenarios.
by Oneclick AI Squad
This n8n template demonstrates how to create a comprehensive voice-powered restaurant assistant that handles table reservations, food orders, and restaurant information requests through natural language processing. The system uses VAPI for voice interaction and PostgreSQL for data management, making it perfect for restaurants looking to automate customer service with voice AI technology. Good to know Voice processing requires active VAPI subscription with per-minute billing Database operations are handled in real-time with immediate confirmations The system can handle multiple simultaneous voice requests All customer data is stored securely in PostgreSQL with proper indexing How it works Table Booking & Order Handling Workflow Voice requests are captured through VAPI triggers when customers make booking or ordering requests The system processes natural language commands and extracts relevant details (party size, time, food items) Customer data is immediately saved to the bookings and orders tables in PostgreSQL Voice confirmations are sent back through VAPI with booking details and estimated wait times All transactions are logged with timestamps for restaurant management tracking Restaurant Info Provider Workflow Info requests trigger when customers ask about hours, menu, location, or services Restaurant details are retrieved from the restaurant_info table containing current information Wait nodes ensure proper data loading before voice response generation Structured restaurant information is delivered via VAPI in natural, conversational format Database Schema Bookings Table booking_id (PRIMARY KEY) - Unique identifier for each reservation customer_name - Customer's full name phone_number - Contact number for confirmation party_size - Number of guests booking_date - Requested reservation date booking_time - Requested time slot special_requests - Dietary restrictions or special occasions status - Booking status (confirmed, pending, cancelled) created_at - Timestamp of booking creation Orders Table order_id (PRIMARY KEY) - Unique order identifier customer_name - Customer's name phone_number - Contact for order updates order_items - JSON array of food items and quantities total_amount - Calculated order total order_type - Delivery, pickup, or dine-in special_instructions - Cooking preferences or allergies status - Order status (received, preparing, ready, delivered) created_at - Order timestamp Restaurant_Info Table info_id (PRIMARY KEY) - Information entry identifier category - Type of info (hours, menu, location, contact) title - Information title description - Detailed information content is_active - Whether info is currently valid updated_at - Last modification timestamp How to use The manual trigger can be replaced with webhook triggers for integration with existing restaurant systems Import the workflow into your n8n instance and configure VAPI credentials Set up PostgreSQL database with the required tables using the schema provided above Configure restaurant information in the restaurant_info table Test voice commands such as "Book a table for 4 people at 7 PM" or "What are your opening hours?" Customize voice responses in VAPI nodes to match your restaurant's tone and branding The system can handle multiple concurrent voice requests and scales with your restaurant's needs Requirements VAPI account for voice processing and natural language understanding PostgreSQL database for storing booking, order, and restaurant information n8n instance with database and VAPI integrations enabled Customising this workflow Voice AI automation can be adapted for various restaurant types - from quick service to fine dining establishments Try popular use-cases such as multi-location booking management, dietary restriction handling, or integration with existing POS systems The workflow can be extended to include payment processing, SMS notifications, and third-party delivery platform integration
by Halfbit 🚀
Daily YouTrack In-Progress Tasks Summary to Discord by Assignee Keep your team in sync with a daily summary of tasks currently In Progress in YouTrack — automatically posted to your Discord channel. This workflow queries issues, filters them by status, groups them by assignee and priority, and sends a formatted message to Discord. It's perfect for teams that need a lightweight, automated stand-up report. > 📝 This workflow uses Discord as an example. You can easily replace the messaging integration with Slack, Mattermost, MS Teams, or any other platform that supports incoming webhooks. Use Case Remote development teams using YouTrack + Discord Replacing daily stand-up meetings with async updates Project managers needing quick visibility into active tasks Features Scheduled** daily execution (default: weekdays at 09:00) Status filter**: only issues marked as In Progress Grouping** by assignee and priority Custom mapping** for user mentions (YouTrack → Discord) Clean Markdown output** for Discord, with direct task links Setup Instructions YouTrack Configuration Get a permanent token: Go to your YouTrack profile → Account Security → Authentication Create a new permanent token with "Read Issue" permissions Copy the token value Set the base API URL: Format: https://yourdomain.youtrack.cloud/api/issues Replace yourdomain with your actual YouTrack instance Identify custom field IDs: Method 1: Go to YouTrack → Administration → Custom Fields → find your "Status" field and note its ID Method 2: Use API call GET /api/admin/customFieldSettings/customFields to list all field IDs Method 3: Inspect a task's API response and look for field IDs in the customFields array Example Status field ID: 105-0 or 142-1 Discord Configuration Create a webhook URL in your Discord server: Server Settings → Integrations → Webhooks → New Webhook Choose target channel and copy the webhook URL Extract webhook ID from URL (numbers after /webhooks/) Environment Variables & Placeholders | Placeholder | Description | |-------------|-------------| | {{API_URL}} | Your YouTrack API base URL | | {{TOKEN}} | YouTrack permanent token | | {{FIELD_ID}} | ID of the "Status" custom field | | {{QUERY_FIELDS}} | Fields to fetch (e.g., summary, id) | | {{PROJECT_LINK}} | Link to your YouTrack project | | {{USER_X}} | YouTrack usernames | | {{DISCORD_ID_X}} | Discord mentions or usernames | | {{NAME_X}} | Display names | | {{WEBHOOK_ID}} | Discord webhook ID | | {{DISCORD_CHANNEL}} | Discord channel name | | {{CREDENTIAL_ID}} | Your credential ID in n8n | Testing the Workflow Test YouTrack connection: Execute the "HTTP Request YT" node individually Verify that issues are returned from your YouTrack instance Check if the Status field ID is correctly filtering tasks Verify filtering: Run the "Filter fields" node Confirm only "In Progress" tasks pass through Check message formatting: Execute the "Discord message" node Review the generated message content and formatting Test Discord delivery: Run the complete workflow manually Verify the message appears in your Discord channel Schedule verification: Enable the workflow Test weekend skip functionality by temporarily changing dates Customization Tips Language**: All labels/messages are in English — customize if needed User mapping**: Adjust assignee → Discord mention logic in the message builder Priorities**: Update the priorityMap to reflect your own naming structure Schedule**: Modify the trigger time in the Schedule Trigger node Alternative platforms**: Swap out the Discord webhook for another messaging service if preferred
by Hueston
Who is this for? Content strategists analyzing web page semantic content SEO professionals conducting entity-based analysis Data analysts extracting structured data from web pages Marketers researching competitor content strategies Researchers organizing and categorizing web content Anyone needing to automatically extract entities from web pages What problem is this workflow solving? Manually identifying and categorizing entities (people, organizations, locations, etc.) on web pages is time-consuming and error-prone. This workflow solves this challenge by: Automating the extraction of named entities from any web page Leveraging Google's powerful Natural Language API for accurate entity recognition Processing web pages through a simple webhook interface Providing structured entity data that can be used for analysis or further processing Eliminating hours of manual content analysis and categorization What this workflow does This workflow creates an automated pipeline between a webhook and Google's Natural Language API to: Receive a URL through a webhook endpoint Fetch the HTML content from the specified URL Clean and prepare the HTML for processing Submit the HTML to Google's Natural Language API for entity analysis Return the structured entity data through the webhook response Extract entities including people, organizations, locations, and more with their salience scores Setup Prerequisites: An n8n instance (cloud or self-hosted) Google Cloud Platform account with Natural Language API enabled Google API key with access to the Natural Language API Google Cloud Setup: Create a project in Google Cloud Platform Enable the Natural Language API for your project Create an API key with access to the Natural Language API Copy your API key for use in the workflow n8n Setup: Import the workflow JSON into your n8n instance Replace "YOUR-GOOGLE-API-KEY" in the "Google Entities" node with your actual API key Activate the workflow to enable the webhook endpoint Copy the webhook URL from the "Webhook" node for later use Testing: Use a tool like Postman or cURL to send a POST request to your webhook URL Include a JSON body with the URL you want to analyze: {"url": "https://example.com"} Verify that you receive a response containing the entity analysis data How to customize this workflow to your needs Analyzing Specific Entity Modify the "Google Entities" node parameters to include entityType filters Add a "Function" node after "Google Entities" to filter specific entity types Create conditions to extract only entities of interest (people, organizations, etc.) Processing Multiple URLs in Batch: Replace the webhook with a different trigger (HTTP Request, Google Sheets, etc.) Add a "Split In Batches" node to process multiple URLs Use a "Merge" node to combine results before sending the response Enhancing Entity Data: Add additional API calls to enrich extracted entities with more information Implement sentiment analysis alongside entity extraction Create a data transformation node to format entities by type or relevance Additional Notes This workflow respects Google's API rate limits by processing one URL at a time The Natural Language API may not identify all entities on a page, particularly for highly technical content HTML content is trimmed to 100,000 characters if longer to avoid API limitations Consider legal and privacy implications when analyzing and storing entity data from web pages You may want to adjust the HTML cleaning process for specific website structures ❤️ Hueston SEO Team
by Niklas Hatje
Use Case This workflow is a slight variation of a workflow we're using at n8n. In most companies, employees have a lot of great ideas. That was the same for us at n8n. We wanted to make it as easy as possible to allow everyone to add their ideas to some formatted database - it should be somewhere where everyone is all the time and could add a new idea without much extra effort. Since we're using Slack, this seemed to be the perfect place to easily add ideas. In this example, we're adding the ideas to Google Sheets instead of Notion, like we do. What this workflow does This workflow waits for a webhook call within Slack, that gets fired when users use the /idea command on a bot that you will create as part of this template. It then checks the command, adds the idea to Google Sheets and notifies the user about the newly added idea as you can see below: Creating your Slack bot Visit https://api.slack.com/apps, click on New App and choose a name and workspace. Click on OAuth & Permissions and scroll down to Scopes -> Bot token Scopes Add the chat:write scope Head over to Slash Commands and click on Create New Command Use /idea as the command Copy the test URL from the Webhook node into Request URL Add whatever feels best to the description and usage hint Go to Install app and click install Setup Create a Google Sheets document with the columns Name and Creator Add your Google credentials Fill the Set me up node. Create your Slack app (see other sticky) Click Test workflow and use the /idea comment in Slack Activate the workflow and exchange the Request URL with the production URL from the webhook How to adjust it to your needs You can adjust the table in Google Sheets and for example, add different types of ideas or areas that they impact Rename the Slack command as it works best for you How to enhance this workflow At n8n we use this workflow in combination with some others. E.g. we have the following things on top: We additionally have a /bug Slack command that adds a new bug to Linear. Here we're using AI to classify the bugs and move it to the right team. (Bug command workflow and Ai Classifier workflow) We also added other types, like /pain to be less solution-driven To make it easier for everyone to give input, we added a Votes column that allows everyone to vote on ideas/pain points in the list We're also running a workflow once a week that highlights the most popular new ideas and the most active voters
by Jonathan | NEX
Supercharge Your Security Operations for Free Stop wasting time manually investigating suspicious IP addresses. This workflow template is your launchpad to automating real-time IP cybersecurity analysis using the NixGuard platform, which you can use for free. This is the first of a two-part system designed to integrate seamlessly into your existing security stack, especially with Wazuh. It calls our main workflow, Automate IP Reputation Checks and Get AI Risk Summaries from NixGuard, to do the heavy lifting. What This Workflow Unlocks for You Free AI-Powered Risk Summaries:** Don't just get data; get answers. NixGuard provides a clear, human-readable summary of why an IP is considered risky. Automated IP Reputation Checks:** Programmatically check any IP against a vast array of threat intelligence sources. A Foundation for Your SOC Automation:** Use the results to trigger your incident response process. The template includes a pre-built example of how to send a detailed alert to Slack, which you can easily adapt for Jira, TheHive, or any other tool. How the Two-Workflow System Works This "Dispatcher" workflow is designed for flexibility. It holds your API key and input, then calls the main analysis workflow. This allows you to easily create multiple triggers (e.g., one for Slack bots, one for webhooks) without duplicating the core logic. Critical Setup Instructions Get the Main Workflow: First, add the main analysis engine to your n8n instance from the community page: NixGuard Analysis Workflow. Add Your Free API Key: In this workflow, click the blue Set API Key & Initial Prompt node. Paste your free NixGuard API key into the apiKey value field. Connect The Workflows: Click the purple Execute NixGuard & Wazuh Workflow node. In the parameters, use the dropdown to select the main analysis workflow you added in Step 1. Ready to automate your threat intelligence? Get your free API key and learn more at; 🔗 Learn more about NixGuard: [thenex.world](thenex.world )🔗 Get started with a free security subscription: thenex.world/security/subscribe Tags: Free, IP Analysis, NixGuard, Wazuh, Security, Automation, AI, Cybersecurity, Threat Intelligence, SOC, Incident Response, IP Reputation, DevSecOps, API