by Automate With Marc
🔧 How It Works Telegram Trigger – Listens for incoming messages from users via your Telegram bot. Watch Full Step-by-step Guide Video here: https://www.youtube.com/watch?v=GzWO7_1lyI8 AI Agent – Processes the message to determine the user's intent (booking or canceling) and extracts necessary details like date, time, and participant names. Google Calendar Node – Depending on the intent: Booking: Creates a new event in Google Calendar with the extracted details. Canceling: Searches for the specified event and deletes it from the calendar. Telegram Node – Sends a confirmation message back to the user, informing them of the successful booking or cancellation. 🧠 Why This is Useful Managing appointments can be time-consuming. This workflow automates the process, allowing users to schedule or cancel meetings effortlessly through a simple chat interface. It's ideal for: Solopreneurs managing their own schedules. Small businesses coordinating meetings with clients. Anyone looking to streamline their appointment management process. 🪜 Setup Instructions Set Up Telegram Bot: Create a new bot using BotFather on Telegram. Obtain the API token and set up the Telegram Trigger node in n8n with this token. OpenAI Platform API required for OpenAI Chat Model Connect to Google Calendar For the full video tutorial, watch here: https://youtu.be/GzWO7_1lyI8
by William Lettieri
Overview Transform your LLM into a powerful GitHub automation specialist with this n8n workflow template. In a world where multiple MCP servers can overwhelm LLMs with context, this streamlined solution provides a dedicated GitHub Agent that handles all GitHub API operations through a single, specialized tool. When you need GitHub operations like creating repositories, managing issues, or handling pull requests, your LLM can make one simple call to the GitHub Agent. This agent specializes exclusively in GitHub MCP server operations, offloading all contextual complexity and providing clean, efficient GitHub automation. ✨ Features Single MCP Server Trigger** - One tool and one parameter to handle all GitHub API interactions Specialized GitHub Agent** - Dedicated AI agent with direct GitHub MCP Server connection Self-Executing Workflow** - "When Executed by Another Workflow" trigger enables seamless workflow chaining Scalable Architecture** - Ready to integrate with unlimited GitHub tools and operations Context Optimization** - Reduces LLM token usage by delegating GitHub complexity to a specialized agent Flexible Request Processing** - Handles any GitHub operation through natural language requests 🎯 Use Cases Repository Management** - Create, clone, and manage repositories programmatically Issue Tracking** - Automate issue creation, updates, and management workflows Pull Request Automation - Streamline code review and merge processes GitHub Actions Integration** - Trigger and monitor CI/CD workflows Team Collaboration** - Automate notifications and team management tasks Documentation Updates** - Automatically update README files and documentation 🏗️ Workflow Architecture Node Breakdown: MCP Server Trigger - Receives requests with GitHub operation parameters Set GitHub Username - Configures GitHub user context for API calls OpenAI Chat Model - Powers the intelligent GitHub agent with contextual understanding Simple Memory - Maintains conversation context and operation history GitHub AI Agent - Specialized Tools Agent with direct GitHub MCP Server access [MCP Server Trigger] → [Set GitHub Username] → [GitHub AI Agent] ↓ [OpenAI Chat Model] ← [Simple Memory] ← [GitHub API Operations] 📋 Requirements Essential Prerequisites: ✅ OpenAI API Key - For AI Agent and Chat Model functionality ✅ GitHub Username Configuration - Edit the "Set GitHub Username" node with your GitHub username for API calls ✅ n8n Version - Compatible with n8n 2024+ releases ✅ MCP Server Setup - Existing GitHub MCP server configuration Recommended Setup: GitHub Personal Access Token with appropriate permissions Basic understanding of n8n workflow configuration Familiarity with GitHub API operations 🚀 Setup Instructions Step 1: Import and Configure Import the workflow template into your n8n instance Navigate to the Set GitHub Username node Replace the placeholder with your actual GitHub username Step 2: API Keys Setup Configure your OpenAI API key in the Chat Model node Ensure your GitHub credentials are properly configured in n8n Test the connection to verify API access Step 3: MCP Server Integration Connect your existing GitHub MCP server to the workflow Verify the MCP Server Trigger is properly configured Test with a simple GitHub operation (e.g., "List my repositories") Step 4: Deploy and Test Activate the workflow in your n8n instance Test with various GitHub operations to ensure functionality Monitor execution logs for any configuration issues 🔧 Customization Options Agent Behavior Modify the Chat Model prompt** to adjust agent personality and response style Configure memory settings** to control conversation context retention Adjust timeout settings** for long-running GitHub operations GitHub Operations Extend supported operations** by adding new GitHub API endpoints Configure repository filters** to limit scope of operations Set up notification preferences** for important GitHub events Integration Points Webhook triggers** for real-time GitHub event processing Scheduled operations** for regular repository maintenance Cross-workflow triggers** for complex automation chains 💡 Pro Tips Start Simple**: Begin with basic operations like repository listing before attempting complex workflows Monitor Token Usage**: The specialized agent approach significantly reduces OpenAI API costs Batch Operations**: Group related GitHub operations in single requests for efficiency Error Handling**: The agent provides detailed error messages for troubleshooting 🤝 Support and Community Documentation**: Official n8n Documentation Community Forum**: n8n Community Issues & Contributions**: Feel free to suggest improvements or report issues 📄 License This workflow template is provided under the MIT License. You're free to use, modify, and redistribute with attribution. Created by: William Lettieri Version: 1.0 Last Updated: May 28, 2025 Compatibility: n8n 2024+
by David Olusola
PromptCraft AI – Telegram Image Generator 🚀 How It Works PromptCraft AI is an n8n automation that transforms simple image ideas sent through Telegram into stunning AI-generated images using OpenAI's DALL·E (or other image models). 🔁 Workflow Overview: Telegram Trigger: Listens for messages from a user on Telegram. Prompt Expansion: The message is transformed into a rich image description using GPT (OpenAI Chat Model). Image Generation: The prompt is passed to OpenAI's image API to generate a high-quality image. Send Image: The final image is sent back to the user on Telegram. (Optional) Log image titles and links to Google Drive and Google Sheets. ⚙️ Setup Instructions 📋 Prerequisites [ ] n8n installed (Self-hosted or via n8n.cloud) [ ] Telegram bot token (via @BotFather) [ ] OpenAI API key (platform.openai.com) [ ] Google Sheets & Drive OAuth2 credentials (optional) 🧠 Step-by-Step Configuration 1. 📥 Import the Workflow Go to n8n → click Import → upload PromptCraft_AI_Template.json 2. 🔐 Set Up Credentials In Credentials, add the following: Telegram API → Paste your bot token OpenAI API → Paste your OpenAI API key (Optional) Google Sheets OAuth2, Google Drive OAuth2 3. 🔄 Replace Placeholders Open each node that requires credentials: Replace REPLACE_OPENAI_API_KEY with your actual OpenAI API key Replace REPLACE_TELEGRAM_API_ID and credential names as needed (Optional) Update Google Drive Folder ID & Sheet ID in respective nodes 4. ✅ Activate the Workflow Turn on the Telegram Trigger node. Deploy and activate the full workflow. 5. ✉️ Test It Out Send your Telegram bot a message like: > a knight riding a robotic horse in the future Receive the generated image back in Telegram! 💡 Pro Tips Use detailed or imaginative inputs for better outputs. Fine-tune the GPT prompt for specific visual styles. Extend with Google Vision, image upscaling, or watermarking. 🛟 Support For setup assistance or custom feature requests, feel free to contact me @dimejicole21@gmail.com Happy Prompting! 🖼✨
by RedOne
Smart Customer Support AI Agent with Gmail and Telegram Who is this for? This workflow is perfect for: Small to medium businesses** looking to automate customer support E-commerce stores** handling order inquiries and customer questions SaaS companies** providing technical support to users Service providers** managing appointment bookings and general inquiries Startups** wanting to provide 24/7 customer service without hiring full-time staff Agencies** managing client communications across multiple channels What problem is this workflow solving? Customer support is essential but resource-intensive. Common challenges include: Slow response times** leading to frustrated customers Repetitive questions** consuming valuable staff time Inconsistent responses** across different support agents Limited availability** outside business hours Scaling support costs** as business grows Context loss** when customers switch between channels This workflow eliminates these pain points by providing instant, consistent, and intelligent responses 24/7. What this workflow does Core Functionality Multi-Channel Monitoring: Simultaneously watches Gmail and Telegram for customer inquiries Intelligent Processing: Uses AI to understand customer intent and context Knowledge Base Integration: Accesses your company's FAQ and support information Contextual Responses: Provides personalized, helpful replies maintaining conversation history Smart Escalation: Automatically escalates complex issues to human agents Comprehensive Logging: Tracks all interactions for analytics and improvement AI Agent Capabilities Natural Language Understanding**: Comprehends customer questions in plain English Context Awareness**: Remembers previous conversations with each customer Knowledge Retrieval**: Searches your knowledge base for accurate information Response Generation**: Creates professional, brand-appropriate responses Escalation Decision**: Identifies when human intervention is needed Multi-Channel Support**: Handles Gmail and Telegram with channel-specific formatting Automation Features Auto-Response**: Replies to customers within seconds Email Management**: Marks processed emails as read Conversation Threading**: Maintains context in email threads and Telegram chats Error Handling**: Gracefully handles failures with admin notifications Analytics Tracking**: Logs interactions for performance monitoring Setup Prerequisites Active Google Workspace or Gmail account Telegram account for bot creation OpenAI API access Google Sheets access n8n instance (cloud or self-hosted) Step 1: Credential Setup Gmail OAuth2 Configuration Go to Google Cloud Console Create new project or select existing one Enable Gmail API Create OAuth 2.0 credentials Add authorized redirect URIs for n8n In n8n: Settings → Credentials → Add Gmail OAuth2 Enter Client ID and Client Secret Complete OAuth flow Telegram Bot Setup Message @BotFather on Telegram Create new bot with /newbot command Choose bot name and username Copy the bot token In n8n: Settings → Credentials → Add Telegram Enter bot token Set webhook URL in bot settings OpenAI API Configuration Sign up at OpenAI Platform Generate API key in API Keys section In n8n: Settings → Credentials → Add OpenAI Enter API key Choose appropriate model (gpt-4o-mini recommended) Google Sheets Setup Use existing Google account from Gmail setup In n8n: Settings → Credentials → Add Google Sheets OAuth2 Complete authorization flow Step 2: Google Sheets Preparation Create three Google Sheets in your Google Drive: Knowledge Base Sheet Sheet Name**: "Knowledge Base" Columns**: ID, Category, Question/Topic, Answer/Response, Keywords, Last_Updated Import sample data from the Knowledge Base example Customize with your company's FAQs and policies Escalation Tracker Sheet Sheet Name**: "Escalations" Columns**: Timestamp, Customer_Name, Customer_Contact, Inquiry_Summary, Escalation_Reason, Priority, Status, Assigned_To This will be auto-populated by the AI agent Interaction Log Sheet Sheet Name**: "Interaction Log" Columns**: Timestamp, Channel, Customer_Name, Customer_Contact, Inquiry_Subject, Customer_Message, AI_Response, Response_Time, Status This tracks all customer interactions for analytics Step 3: Workflow Configuration Import Template Copy the workflow JSON from the template In n8n: Import workflow from JSON Replace placeholder Sheet IDs with your actual Google Sheet IDs Update Sheet References Open each Google Sheets node Select your created sheets from the dropdown Verify column mappings match your sheet structure Customize AI Prompts Edit the "Customer Support AI Agent" node Update system message with: Your company name and description Brand voice and tone guidelines Specific policies and procedures Escalation criteria Configure Error Notifications (Optional) Set up Slack webhook or email notifications Update error notification node with your webhook URL Customize error message format Step 4: Testing Test Gmail Integration Send test email to your support Gmail account Check workflow execution in n8n Verify response is sent and email marked as read Check interaction logging in Google Sheets Test Telegram Integration Send message to your Telegram bot Verify bot responds appropriately Test conversation memory with follow-up messages Check escalation functionality with complex request Test Knowledge Base Ask questions covered in your knowledge base Verify AI retrieves and uses correct information Test with variations of the same question Ensure responses are consistent and helpful How to customize this workflow to your needs Brand Voice Customization Update the AI system prompt to include: Your company's tone (formal, casual, friendly) Key phrases and terminology you use Brand personality traits Communication style preferences Knowledge Base Expansion Add industry-specific FAQs Include product documentation Add troubleshooting guides Create category-specific responses Escalation Rules Customize when to escalate by modifying the AI agent instructions: Billing disputes over $X amount Technical issues requiring developer help Angry or dissatisfied customers Requests outside standard services Legal or compliance questions Additional Channels Extend the workflow to support: Slack**: Add Slack triggers and response nodes WhatsApp**: Integrate WhatsApp Business API Web Chat**: Add webhook triggers for website chat Discord**: Connect Discord bot integration Analytics Enhancement Add sentiment analysis to customer messages Implement customer satisfaction scoring Create automated reporting dashboards Set up alert thresholds for escalation rates Integration Opportunities CRM Integration**: Connect to HubSpot, Salesforce, or Pipedrive Ticketing System**: Link to Zendesk, Freshdesk, or Jira Service Desk E-commerce Platform**: Integrate with Shopify, WooCommerce, or Magento Calendar Booking**: Connect to Calendly or Acuity for appointment scheduling Advanced Features Multi-language Support**: Add translation capabilities Voice Messages**: Integrate speech-to-text for Telegram voice notes Image Recognition**: Process customer screenshots for technical support Proactive Outreach**: Send follow-up messages based on customer behavior Workflow Maintenance Daily Tasks Review escalation queue Monitor error notifications Check response quality in interaction log Weekly Reviews Analyze customer interaction patterns Update knowledge base with new common questions Review escalation reasons and optimize AI prompts Monthly Optimization Export interaction data for detailed analysis Calculate key metrics (response time, resolution rate, escalation rate) Update AI model parameters based on performance Expand knowledge base with seasonal or trending topics Key Metrics to Track Response Time**: Average time from customer message to AI response Resolution Rate**: Percentage of inquiries resolved without escalation Customer Satisfaction**: Based on follow-up surveys or sentiment analysis Escalation Rate**: Percentage of conversations requiring human intervention Channel Performance**: Effectiveness of Gmail vs Telegram vs other channels Knowledge Base Usage**: Which topics are accessed most frequently Peak Hours**: When customers contact support most often Troubleshooting Common Issues Gmail not triggering**: Check OAuth permissions and API quotas Telegram bot not responding**: Verify bot token and webhook configuration AI responses seem off**: Review and update system prompts Escalations not logging**: Check Google Sheets permissions and column mapping High escalation rate**: Expand knowledge base and refine AI instructions Performance Optimization Monitor OpenAI API usage and costs Adjust AI model temperature for response consistency Optimize knowledge base for faster searches Set appropriate conversation memory limits This workflow provides a solid foundation for automated customer support that can be extensively customized to match your specific business needs and grow with your company.
by David Olusola
🔍 What This Workflow Does This RAG Pipeline in n8n automates document ingestion from Google Drive, vectorizes it using OpenAI embeddings, stores it in Pinecone, and enables chat-based retrieval using LangChain agents. Main Functions: 📂 Auto-detects new files uploaded to a specific Google Drive folder. 🧠 Converts the file into embeddings using OpenAI. 📦 Stores them in a Pinecone vector database. 💬 Allows a user to query the knowledge base through a chat interface. 🤖 Uses a GPT-4o-mini model with LangChain to generate intelligent responses using retrieved context. ⚙️ Setup Instructions Connect Accounts Ensure these services are connected in n8n: ✅ Google Drive (OAuth2) ✅ OpenAI ✅ Pinecone You can do this in n8n > Credentials > New and use the matching names from the file: Google Drive: "Google Drive account 2" OpenAI: "OpenAi success" Pinecone: "PineconeApi account 2" Folder Setup Upload your documents to this folder in Google Drive: 📁 Power Folder The workflow is triggered every minute when a new file is uploaded. Workflow Overview A. File Ingestion Path Google Drive Trigger — detects new file. Google Drive (Download) — downloads the new file. Recursive Text Splitter — splits text into chunks. Default Data Loader — loads content as LangChain documents. OpenAI Embeddings — converts text chunks into embeddings. Pinecone Vector Store — stores them in "ragfile" index. B. Chat Retrieval Path When chat message received — AI Agent — LangChain agent managing tools. OpenAI Chat Model (GPT-4o-mini) — generates replies. Pinecone Vector Store (retrieval) — retrieves matching content. Embeddings OpenAI1 — helps match queries to document chunks.
by InfraNodus
Using the knowledge graphs instead of RAG vector stores This workflow creates a Telegram chatbot agent that has access to several knowledge bases at the same time (used as "experts"). These knowledge bases are provided using the InfraNodus GraphRAG using the knowledge graphs and providing high-quality responses without the need to set up complex RAG vector store workflows. The advantages of using GraphRAG instead of the standard vector stores for knowledge are: Easy and quick to set up and update (no complex data import workflows or vector stores needed) A knowledge graph has a holistic view of your knowledge base and knows what it's about Better retrieval of relations between the document chunks = higher quality responses How it works This template uses the n8n AI agent node as an orchestrating agent that decides which tool (knowledge graph) to use based on the user's prompt. Here's a description step by step: The user submits a question using the Telegram bot, which is then received in the n8n workflow via the Telegram trigger node. The AI agent node checks a list of tools it has access to. Each tool has a description of the knowledge it has auto-generated by InfraNodus. The AI agent decides which tool should be used to generate a response. It may reformulate user's query to be more suitable for the expert. The query is then sent to the InfraNodus HTTP node endpoint, which will query the graph that corresponds to that expert. Each InfraNodus GraphRAG expert provides a rich response that takes the whole context into account and provides a response from each expert (graph) along with a list of relevant statements retrieved using a combination or RAG and GraphRAG. The n8n AI Agent node integrates the responses received from the experts to produce the final answer. The final answer is sent back to the Telegram bot who delivers it back to the private chat or a Telegram group. How to use You need an InfraNodus GraphRAG API account and key to use this workflow. Create an InfraNodus account Get the API key at https://infranodus.com/api-access and create a Bearer authorization key for the InfraNodus HTTP nodes. Create a separate knowledge graph for each expert (using PDF / content import options) in InfraNodus For each graph, go to the workflow, paste the name of the graph into the body name field. Keep other settings intact or learn more about them at the InfraNodus access points page. Once you add one or more graphs as experts to your flow, add the LLM key to the OpenAI node Create a Telegram bot (the instructions are in the workflow Post note) — it takes 30 seconds. Get its API key and create the Telegram credentials to use in the Telegram nodes in this workflow. Requirements An InfraNodus account and API key An OpenAI (or any other LLM) API key A Telegram account Customizing this workflow You can use this same workflow with a standard AI chatbot via a URL that can also be embedded to any website. You can also use it with ElevenLabs AI voice agent. There are many more customizations available. Check out the complete guide at https://support.noduslabs.com/hc/en-us/articles/20174217658396-Using-InfraNodus-Knowledge-Graphs-as-Experts-for-AI-Chatbot-Agents-in-n8n Also check out the video tutorial with a demo: Support If you have any questions, contact us via the support portal at https://support.noduslabs.com or via our Discord channel. More n8n workflows are available on our support portal: n8n x InfraNodus AI automation workflows.
by Davide
This workflow automates the process of removing backgrounds from WooCommerce product images using the BackgroundCut API, and then updates the product images in both WooCommerce and a Google Sheet. Once set up, the workflow processes product images in bulk, removing backgrounds and updating WooCommerce seamlessly. This workflow is perfect for online stores that sell: Clothing and fashion items Jewelry and accessories General consumer products Any product that benefits from clean, background-free images for a professional storefront presentation will see improved visual appeal and potentially higher conversions. Benefits ⏱ Time-saving:** Automates what would otherwise be a manual and repetitive task of editing images and updating product listings. 🔄 Fully Integrated:** Connects Google Sheets, BackgroundCut API, FTP server, and WooCommerce in a seamless loop. 📦 Scalable:** Supports batch processing, making it suitable for stores with hundreds of products. 📁 Organized Tracking:** Updates the Google Sheet with the new image and a “DONE” flag for easy monitoring. 🔧 Customizable:** You can change the image processing API, storage server, or eCommerce platform if needed. How It Works Data Retrieval: The workflow starts by fetching product data (ID and IMAGE URL) from a Google Sheets document. Only rows without a "DONE" marker are processed to avoid duplicates. Background Removal: Each product image URL is sent to the BackgroundCut API, which removes the background and returns the edited image. File Handling: The processed image is uploaded to an FTP server with the original filename preserved. A new URL for the edited image is generated and assigned to the product. WooCommerce Update: The product in WooCommerce is updated with the new image URL. Sheet Update: The Google Sheet is marked as "DONE" for the processed row, and the new image URL is recorded. Batch Processing: The workflow loops through all rows in the sheet until all products are processed. Set Up Steps Prepare the Google Sheet: Clone the provided Google Sheet template. Fill in the ID (product ID) and IMAGE (original image URL) columns. API & Credentials Setup: Get an API key from BackgroundCut.co. Configure the HTTP Request node ("Remove from Image URL") with: Header Auth: Authorization = API_KEY. Set up WooCommerce API credentials in the "Update product" node. FTP Configuration: Replace YOUR_FTP_URL in the "New Image Url" node with your FTP/CDN base URL. Ensure FTP credentials are correctly set in the FTP node. Execution: Run the workflow manually via "When clicking ‘Execute workflow’". The process automatically handles background removal, file upload, and WooCommerce updates. Need help customizing? Contact me for consulting and support or add me on Linkedin.
by Jez
This n8n workflow template uses community nodes and is only compatible with the self-hosted version of n8n. This workflow demonstrates how to build and expose a sophisticated n8n AI Agent as a single, callable tool using the Multi-Agent Collaboration Protocol (MCP). It allows external clients or other AI systems to easily query software library documentation via Context7, without needing to manage the underlying tool orchestration or complex conversational logic. Core Idea: Instead of building complex agentic loops on the client-side (e.g., in Python, a VS Code extension, or another AI development environment), this workflow offloads the entire agent's reasoning and tool-use process to n8n. The client simply sends a natural language query (like "How do I use Flexbox in Tailwind CSS?") to an SSE endpoint, and the n8n agent handles the rest. Key Features & How It Works: Public MCP Endpoint: The main workflow uses the Context7 MCP Server Trigger node to create an SSE endpoint. This makes the agent accessible to any MCP-compatible client. The path for the endpoint is kept long and random for basic 'security by obscurity'. Tool Workflow as an Interface: A Tool Workflow node (named call_context7_ai_agent in this example) is connected to the MCP Server Trigger. This node defines the single "tool" that external clients will see and call. Dedicated AI Agent Sub-Workflow: The call_context7_ai_agent tool invokes a separate sub-workflow which contains the actual AI logic. This sub-workflow starts with a Context7 Workflow Start node to receive the user's query. A Context7 AI Agent node (using Google Gemini in this example) is the brain, equipped with: A system prompt to guide its behavior. Simple Memory to retain context for each execution (using {{ $execution.id }} as the session key). Two specialized Context7 MCP client tools: context7-resolve-library-id: To convert library names (e.g., 'Next.js') into Context7-specific IDs. context7-get-library-docs: To fetch documentation using the resolved ID, with options for specific topics and token limits. Seamless Tool Use: The AI Agent autonomously decides when and how to use the resolve-library-id and get-library-docs tools based on the user's query, handling the multi-step process internally. Benefits of This Approach: Simplified Client Integration:** Clients interact with a single, powerful tool, sending a simple query. Reduced Client-Side Token Consumption:** The detailed prompts, tool descriptions, and conversational turns are managed server-side by n8n, saving tokens on the client (especially useful if the client is another LLM). Centralized Agent Management:** Update your agent's capabilities, tools, or LLM model within n8n without any changes needed on the client side. Modularity for Agentic Systems:** Perfect for building complex, multi-agent systems where this n8n workflow can act as a specialized "expert" agent callable by others (e.g., from environments like Smithery). Cost-Effective:** By using a potentially less expensive model (like Gemini Flash) for the agent's orchestration and leveraging the free tier or efficient pricing of services like Context7, you can build powerful solutions economically. Use Cases: Providing an intelligent documentation lookup service for coding assistants or IDE extensions. Creating specialized AI "micro-agents" that can be consumed by larger AI applications. Building internal knowledge base query systems accessible via a simple API-like interface. Setup: Ensure you have the necessary n8n credentials for Google Gemini (or your chosen LLM) and the Context7 MCP client tools. The Path in the Context7 MCP Server Trigger node should be unique and secure. Clients connect to the "Production URL" (SSE endpoint) provided by the trigger node. This workflow is a great example of how n8n can serve as a powerful backend for building and deploying modular AI agents. I've made a video to try and explain this a bit too https://www.youtube.com/watch?v=dudvmyp7Pyg
by Automate With Marc
🧠 Google Drive Upload Trigger → Pinecone Vector Upsert for Document Indexing Category: AI & LLM / Document Indexing Level: Intermediate Tags: Google Drive, Pinecone, OpenAI, Embeddings, Vector Store, LangChain, RAG 📄 What This Workflow Does This workflow watches a specific Google Drive folder and automatically uploads any newly added document to a Pinecone vector database — complete with OpenAI-generated embeddings. Perfect for setting up retrieval-augmented generation (RAG) pipelines, semantic search, or document Q&A systems. Once configured, your knowledge base stays up-to-date with zero manual effort. Watch Full Step By Stey Tutorial Video Here: https://www.youtube.com/@Automatewithmarc 🔧 How It Works 📁 Google Drive Trigger Watches a specific folder and triggers when new documents are uploaded. 🔍 Google Drive File Search & Download Finds and fetches all files in the folder. 🔄 Loop Over Each File Handles batch processing for multiple files. 📃 Document Loader Parses each file as binary and applies custom metadata like document type. ✂️ Text Splitter Breaks content into manageable chunks for embedding (e.g., 600 characters, 60 overlap). 🧠 OpenAI Embeddings Generates vector embeddings using OpenAI. 📦 Pinecone Vector Store Inserts/upserts documents into a specific Pinecone namespace for search-ready indexing. 🧠 Why This is Useful This is a production-grade setup for: Building vector search tools over internal docs Feeding up-to-date data into RAG agents or chatbots Auto-tagging and chunking files for scalable AI workflows Whether you’re indexing course outlines, SOPs, or technical docs — this automation keeps your vector store fresh and organized. 🪜 Setup Instructions Connect your Google Drive, OpenAI, and Pinecone accounts. Specify the Google Drive folder to monitor. Customize metadata, chunk size, or vector namespace as needed. Activate the workflow and drop a file into the folder — magic happens behind the scenes. 📌 Notes Works best with PDFs or text-based documents. You can swap out OpenAI with other embedding models if needed. Consider adding notifications or logging (e.g., via Slack or email) for better observability.
by Gleb D
This n8n workflow automates the discovery, enrichment, and comparative analysis of startups from the Crunchbase dataset via Bright Data, enhanced with AI, and exports structured results to Google Sheets. 🚀 What It Does Receives a keyword from the user that describes the area of interest — such as an industry, sector, technology, or trend (e.g., "AI in healthcare", "carbon capture", "edtech"). This keyword is used to filter relevant startups from the Crunchbase dataset via Bright Data. Fetches data from Bright Data's Crunchbase snapshot API. Extracts and cleans key fields from the JSON response. Sorts startups by most recent founding date. Selects the top 10 most recent companies. Sends these 10 companies to Google Gemini AI for comparative analysis. Embeds the AI-generated summary into the final export. Appends results to a Google Sheet for tracking and reporting. 🛠️ Step-by-Step Setup Get user keyword input from a form. Use 3 Bright Data requests: Start snapshot. Poll snapshot status until ready. Fetch snapshot data in JSON format. Use a Python Code node to: Parse and sort companies by founded_date. Clean and standardize data fields. Pass the top 10 companies into Gemini AI for comparative insight. Merge the AI output back with company data. Send everything to Google Sheets. 🧠 How It Works Snapshot Control: Polls every few seconds until the Bright Data snapshot is complete. Code Cleanup: Ensures consistent structure and formatting across all records. Comparative AI Analysis: Gemini compares all 10 companies at once and returns a unified analysis. Merging Output: AI analysis is merged into the first company’s record (to avoid duplication), while all 10 are exported. 📤 Google Sheet Output Each row includes: name, founded, about, num_employees, type, ipo_status, full_description, social_media_links, address, website, funding_total, num_investors, lead_investors, founders, products_and_services, monthly_visits, crunchbase_link, ai_analysis. AI comparative analysis summary (only once per batch – attached to the first company). All fields from above customizible through the python code (you can add additional ones from Bright Data output). 🔐 Required Credentials Bright Data* – Replace *YOUR_API_KEY** in 3 HTTP Request nodes. Google Gemini API** – For AI analysis. Google Sheets OAuth2** – For spreadsheet export. ⚠️ Notes AI output is shared once per batch of 10 companies, attached to the first company entry. You can configure the limit of batch size in the first "Code" node.
by Yaron Been
Automate expense reviews with AI-powered CFO-level analysis. This workflow monitors Airtable expense submissions, uses GPT-4 to analyze expenses like an experienced CFO, flags suspicious expenses with detailed reasoning, and maintains comprehensive audit trails in Pinecone vector database. 🚀 What It Does Smart Monitoring**: Watches Airtable for new expense submissions AI CFO Analysis**: GPT-4 applies financial expertise to review amounts, categories, and descriptions Intelligent Flagging**: Automatically identifies policy violations and suspicious patterns Audit Trail**: Stores all decisions in Pinecone for compliance and searchability Auto Updates**: Updates Airtable records with AI decisions and detailed reasoning 🎯 Perfect For Finance teams needing intelligent expense oversight CFOs wanting to automate expense policy enforcement Growing companies scaling expense management Businesses requiring compliance documentation ⚙️ Key Benefits ✅ 99% faster expense processing vs manual review ✅ CFO-level intelligence applied to every expense ✅ Complete audit trail for compliance ✅ Real-time fraud detection and policy enforcement ✅ Detailed explanations for every decision 🔧 What You Need Airtable base with expense data (template included) OpenAI API for GPT-4 analysis Pinecone account for audit trail storage Basic expense submission process 📊 Sample Results Input: $4,500 business class flight to Tokyo AI Decision: "Flagged - Amount exceeds typical travel thresholds. Requires verification against travel policies and client justification for premium travel." 🛠️ Setup & Support Quick Setup: Deploy in 60 minutes with included templates and documentation YouTube: https://www.youtube.com/@YaronBeen/videos 💼 Expert Support LinkedIn: https://www.linkedin.com/in/yaronbeen/ 📧 Direct Help Email: Yaron@nofluff.online Transform expense management from manual bottleneck to intelligent automation. Let AI handle policy compliance while your finance team focuses on strategy.
by InfraNodus
Analyze and Explore your ZenDesk Support Requests using AI-Powered Knowledge Graph This template helps you create an interactive InfraNodus knowledge graph for your ZenDesk tickets using any search criteria (e.g. after a certain date, specific status, sender, keyword) that will automatically be sent to a selected Slack channel. Here's an example of the InfraNodus graph that shows the main topics and gaps in ZenDesk support tickets: You can use the workflow to: Get an instant overview of the main topics your customers are talking about Generate business and product ideas based on the blind spots identified using the InfraNodus AI See which topics correlate to the negative / positive sentiment understanding the weak and strong sides of your product and support Receive daily notifications on the main topics your customers are talking about via Slack / Telegram / Email and other channels Perform detailed search using a password-protected web form for tickets filtered by a certain date, status, tag, sender, keyword. Use the interactive graph to explore specific topics and concepts your customers are talking about — a great way to engage with their concerns in a non-linear way, bypassing the boring tabular interface Use the graph to explore the support requests by specific segments — e.g. status, priority, sentiment, tags, urgency. Use the graph generated as an AI expert available to your AI agents in other n8n workflows via InfraNodus GraphRAG. For instance, you could connect your knowledge base to the support tickets graph and let the agent discover possible solutions to your customers' most typical problems. See an sample template here. How it works You can start this workflow manually, with a daily / weekly trigger, or via a password-protected web form, where you can provide search requests. Once started, it will perform a ZenDesk tickets search with the default or your custom criteria. Then it will use the search results to generate an InfraNodus graph (or add the new data to an existing one), and — finally — use the InfraNodus AI endpoints to generate a topical summary and a product business idea based on the blind spots identified. The results are delivered a channel of your choice. Here's a description step by step: Start the workflow (manually or on schedule) Assign values to variables (search criteria, graph name) Perform ZenDesk support tickets search Convert the data received and submit it to InfraNodus to generate a knowledge graph Generate topical summary with InfraNodus Generate a business idea with InfraNodus (you can also change the setting to generate a question instead) Send a notification via Slack / Telegram / Email or back to the webform How to use You need an InfraNodus API account and key to use this workflow. You also need a ZenDesk account. It takes about 5 minutes to set everything up. Create an InfraNodus account. Get the API key at https://infranodus.com/api-access and create a Bearer authorization key for the InfraNodus HTTP nodes. Add the authorization key to all the InfraNodus HTTP nodes in the template (Steps 3, 5, and 6). Generate a ZenDesk authorization token following the instructions in n8n's ZenDesk node (Step 3). Optionally: connect your Slack or Telegram or Gmail account to receive automated notifications with the link to the graph, once the workflow is ready (it takes about 30 seconds to run). Run it with using the form to play around with the search criteria that works best for you (you can leave everything empty at first), then choose the parameters you like and activate the Daily Trigger node to receive executive summaries to a channel of your choice. Open the graph in InfraNodus and use our customer feedback analysis guide to explore the graph and generate new insights. Requirements An InfraNodus account and API key A ZenDesk API key (Optional) — a Slack / Telegram / Gmail connection for notifications FAQ 1. What are the best use cases to try? I love to set the graph to deliver me a daily visual briefing of what's happening in my support portal. It shows me the main topics and gaps and generates product ideas based on them. Great to keep the pulse on the business. I also really like generating a graph for the past week manually, using the form, and then exploring the graph in InfraNodus directly using the customer feedback analysis workflow to: discover main topics my customers are talking about? understand the topics that have the most negative connotation for them (using the sentiment filter)? discover some support tickets that need more attention or that talk about the topics I'm personally interested in and engage with the client identify the gaps in your customers' discourse based on the blind spots — useful for generating ideas, see the graph below with a demo of how it works: 2. Why use the graph and not just AI summary? AI summary will just give you generic results. You'll see what you already know. Using the graph helps you deconstruct the discourse and get a much more nuanced understanding of the main pain points and interests of your customers. The auto-generated InfraNodus summary and business ideas have a direct explainable connection to the discourse, so you can always see where they are coming from and maintain the focus on all the topics, rather than the most prominent ones. Additionally, having an interactive graph opens a possibility to explore your customers' concerns in a more engaging way, finding the topics and concepts that are relevant to your interests or to your agents' expertise, helping you find the conversations that you'd otherwise have missed. 3. Is my customers' data safe? Absolutely. InfraNodus' terms of use and privacy policy state that the customers' data and text graphs are not used in AI training and are not offered to any third parties. Its underlying API system uses the Open API which explicitly states that data is not used for training either. So all the customers' data are private and safe. As an extra precaution, you can always delete the graphs after you analyzed them, in which case there is no trace of this data left on the servers. Customizing this workflow Check out the complete setup guide for this workflow at https://support.noduslabs.com/hc/en-us/articles/20447530961308-Zendesk-Tickets-Summarization-Sentiment-Analysis-and-Slack-Integration-with-n8n-and-InfraNodus For support with this template, please, contact https://support.noduslabs.com For more InfraNodus n8n workflows, please, see our creators page: https://n8n.io/creators/infranodus/ To learn more about InfraNodus, GraphRAG, and knowledge graph analysis: https://infranodus.com