by inderjeet Bhambra
This workflow contains community nodes that are only compatible with the self-hosted version of n8n. Who is this for? IT teams and support organizations looking to automate Level 1 support with AI-powered assistance while maintaining proper ticket management workflows. What problem does this solve? Eliminates repetitive manual support tasks by providing instant, context-aware assistance that references organizational knowledge and creates structured tickets when needed. What this workflow does RAG Pipeline**: Processes PDF/CSV documents into searchable vector database Intelligent Slack Bot**: This AI-helpdesk assistant handles support requests with thread-aware conversations Vector Knowledge Search**: Searches embedded knowledge base articles and historical case data JIRA Integration**: Creates, searches, and manages support tickets automatically Emoji Reactions**: Users can trigger actions (create tickets, escalate) via emoji reactions Requirements Required Accounts: n8n Cloud or self-hosted instance Slack workspace with admin access Supabase account (vector database) JIRA Cloud instance OpenAI API key Technical Prerequisites: Basic n8n workflow knowledge Slack app creation experience Understanding of vector databases Setup Steps 1. Slack App Configuration Create new Slack app with Bot Token Scopes: app_mentions:read, channels:history, channels:read, groups:history, groups:read, im:history, im:read, mpim:history, mpim:read, users:read Configure Event Subscriptions: app_mention, message.channels, message.groups, reaction_added Set Request URL to your n8n Slack Trigger webhook 2. Supabase Vector Database Setup Create new Supabase project Enable pgvector extension Create documents table with vector column (1536 dimensions for OpenAI embeddings) Configure RLS policies for secure access 3. JIRA Configuration Generate API token from JIRA Cloud Create helpdesk project with appropriate issue types Note project ID and issue type IDs for workflow configuration 4. n8n Workflow Configuration Import workflow and configure credentials Update Slack channel IDs in trigger nodes Set OpenAI API key in all OpenAI nodes Configure Supabase connection in vector store nodes Update JIRA project settings in MCP server nodes 5. Knowledge Base Data Format Supported file formats: PDF, CSV CSV Structure: Structure your data with columns, but not limited to, Ticket#, Issue Description, Issue Summary, Resolution Provided, Case Status, Contact User PDF Content: Technical documentation, troubleshooting guides, policy documents Upload documents via the form trigger to automatically embed in vector database. Customization Options AI Agent Behavior Modify system prompt in AIHelpdesk Agent node Adjust conversation memory window (default: 20 messages) Change AI model (GPT-4o, GPT-3.5-turbo, etc.) Reaction Mappings Customize emoji-to-action mappings in Reaction Handler code Add new reaction types for department-specific workflows Configure escalation rules and priority levels JIRA Integration Customize ticket templates and fields Add auto-assignment rules based on issue type Configure SLA and priority mappings Vector Search Adjust similarity thresholds for knowledge retrieval Modify search result limits and relevance scoring Add metadata filtering for departmental knowledge bases Advanced Features Thread-aware conversation memory Automatic bot loop prevention Context-preserving ticket creation Multi-modal file processing (PDF + CSV) Scalable MCP architecture for tool integration Use Cases Level 1 IT Support**: Automate common troubleshooting workflows Employee Onboarding**: Answer policy and procedure questions Internal Help Desk**: Route and track internal service requests Knowledge Management**: Make organizational knowledge searchable and actionable Template includes Complete Slack integration with thread support RAG pipeline for document processing Vector similarity search implementation JIRA ticket lifecycle management Emoji reaction-based user interactions Comprehensive error handling and validation
by Tiartyos
Voice Cloning Workflow - Zyphra Zonos API Who is this for? This workflow is designed for developers, content creators, and businesses looking to automate high-quality voice synthesis using AI voice cloning technology. What problem does this solve? It automates the process of generating natural-sounding speech from text using a sample voice file, eliminating the need for manual voice recording and providing consistent voice output for applications like audiobooks, virtual assistants, or content localization. What this workflow does The workflow receives text and voice cloning parameters via webhook, reads a sample voice file from your storage, sends the data to Zyphra's Zonos API for voice synthesis, and saves the generated audio file to your specified output location. Prerequisites You'll need: API key from Zyphra (obtain from https://playground.zyphra.com/settings/api-keys) Account registration at https://playground.zyphra.com Sample voice file stored on accessible disk/cloud storage n8n instance running with webhook capabilities Setup Configure your Zyphra API key in the "Call Zyphra Clone API" node under Header Parameters (Name: X-API-Key, Value: your-api-key) Ensure your sample voice files are accessible at the paths you'll specify Test the webhook endpoint is accessible Supported Audio Formats The API supports multiple output formats through the mime_type parameter: WebM** (default) - audio/webm Ogg** - audio/ogg WAV** - audio/wav MP3** - audio/mp3 or audio/mpeg MP4/AAC** - audio/mp4 or audio/aac Usage Example Endpoint: POST http://localhost:5678/webhook-test/voice-clone Headers: Content-Type: application/json Request Body: { "text": "Hello there! This voice sounds just like the sample!", "speaking_rate": 18, "sample_voice_path": "/data/output/sampleVoice.wav", "output_path": "/data/output/", "language_iso_code": "en-us", "mime_type": "audio/wav", "model": "zonos-v0.1-transformer", "emotion": { "happiness": 0.8, "neutral": 0.3, "sadness": 0.05, "disgust": 0.05, "fear": 0.05, "surprise": 0.05, "anger": 0.05, "other": 0.5 } } Parameters Required Parameters text**: Text to synthesize into speech sample_voice_path**: Path to your voice sample file output_path**: Directory where generated audio will be saved Optional Parameters (with defaults) speaking_rate**: 15 - Speech speed language_iso_code**: "en-us" - Language code mime_type**: "audio/wav" - Output audio format model**: "zonos-v0.1-transformer" - AI model to use emotion**: Object with emotion levels (0-1 scale)
by Elegant Biztech
Automated QuickBooks Invoice to Custom PDF & Email Tired of the standard, boring invoices from QuickBooks Online? This workflow completely automates the process of creating beautiful, custom-branded PDF invoices and emailing them directly to your clients, saving you time and elevating your brand's professionalism. The moment you create an invoice in QuickBooks, this workflow triggers, fetches all the necessary data, and generates a lavish, multi-page-aware PDF invoice complete with your company logo and signature. Key Features Fully Automated:** Runs instantly when a new invoice is created in QuickBooks. Custom Branding:** Automatically fetches your company logo and signature from a URL to place on the invoice. Modern & Professional Design:** Uses a premium, multi-column HTML template that is clean, easy to read, and far superior to the default QBO templates. Multi-Page Ready:** If an invoice has many line items, the template will intelligently create multiple pages and add a "Page X of Y" footer automatically. Smart Layout:** The totals and summary block are designed to never break across pages, ensuring a professional look no matter the length. Automatic Emailing:** The final PDF is attached to a beautifully formatted email and sent directly to the customer's email address on file. Prerequisites Before you start, you will need a few things: A running n8n instance. A QuickBooks Online account with API access. A running Gotenberg instance. This is a powerful, open-source tool for converting HTML to PDF. This workflow is designed to connect to its API. You can learn more about it here. Publicly accessible URLs for your company logo and signature image (e.g., hosted on your website or a service like Imgur). Setup Guide Follow these steps carefully to configure the workflow for your own use. Nodes that need your attention are marked with a [!!] prefix. Step 1: Configure the QuickBooks Webhook The workflow starts with a webhook. You need to tell QuickBooks to send information to this webhook. Open the [!!] Listen for New QuickBooks Invoice node. You will see a Webhook URL. Copy the Production URL. Go to your QuickBooks Developer dashboard, select your app, and navigate to the Webhooks section. Paste the n8n URL into the Endpoint URL field and select the Invoice event to subscribe to. Step 2: Connect Your QuickBooks Account Open the [!!] Get Invoice Data from QuickBooks node. In the "Credentials" field, select your existing QuickBooks Online credentials or create a new set. Step 3: Add Your Branding Open the [!!] Fetch Company Logo Image node. In the URL field, replace the placeholder with the public URL of your company's logo. Open the [!!] Fetch Company Signature Image node. In the URL field, replace the placeholder with the public URL of your signature image. Step 4: Update the PDF Generation Service Open the [!!] Generate PDF via Gotenberg node. In the URL field, replace the placeholder http://YourGotenBergInstanceURL/... with the real URL of your running Gotenberg instance. Step 5: Configure Your Email Open the [!!] Email PDF Invoice to Customer node. In the "Credentials" field, select your SMTP or email service credentials. Customize the From Email and Subject fields. You can also edit the beautiful HTML email body to match your company's tone of voice. Step 6: Activate Your Workflow You're all set! Save the workflow and activate it using the toggle at the top-right of the screen. Now, when you create a new invoice in QuickBooks, this automation will handle the rest. A Note from the Creator Thank you for using this workflow! I believe that professional and automated invoicing is a cornerstone of a great business. This tool was designed to save you time and help you put your best foot forward with every client interaction. If you have any questions or need assistance, feel free to reach out. Website:** https://www.elegantbiztech.com/ Email:** sales@elegantbiztech.com
by Cyril Nicko Gaspar
๐ AI Agent Template with Bright Data MCP Tool Integration This template enables natural-language-driven automation using Bright Data MCP tools. It extracts all available tools from MCP, processes the userโs query through an AI agent, then dynamically selects and executes the appropriate tool. โ Problem It Solves Traditional automation often requires users to understand APIs, interfaces, or scripts to perform backend tasks. The Bright Data MCP integration solves this by allowing natural language interaction, intelligently classifying user intent, and managing context-aware execution of complex operationsโideal for data extraction, customer support, and workflow orchestration. ๐งฐ Pre-requisites Before deploying this template, make sure you have: An active N8N instance (self-hosted or cloud). A valid OpenRouter API key (or another compatible AI model). Telegram bot and its API token Access to the Bright Data MCP API with credentials. Basic familiarity with N8N workflows and nodes. โ๏ธ Setup Instructions Setup and obtain API token and other necessary information from Bright Data In your Bright Data account, obtain the following information: API token Web Unlocker zone name (optional) Browser Zone name (optional) Host SSE server from STDIO command The methods below will allow you to receive SSE (Server-Sent Events) from Bright Data MCP via a local Supergateway or Smithery ** Method 1: Run Supergateway in a separate web service (Recommended) This method will work for both cloud version and self-hosted N8N. Signup to any cloud services of your choice (DigitalOcean, Heroku, Hetzner, Render, etc.). For NPM based installation: Create a new web service. Choose Node.js as runtime environment and setup a custom server without repository. In your serverโs settings to define environment variables or .env file, add: `API_TOKEN=your_brightdata_api_token WEB_UNLOCKER_ZONE=optional_zone_name BROWSER_ZONE=optional_browser_zone_name` Paste the following text as a start command: npx -y supergateway --stdio "npx -y @brightdata/mcp" --port 8000 --baseUrl http://localhost:8000 --ssePath /sse --messagePath /message Deploy it and copy the web server URL, then append /sse into it. Your SSE server should now be accessible at: https://your_server_url/sse For Docker based installation: Create a new web service. Choose Docker as the runtime environment. Set up your Docker environment by pulling the necessary images or creating a custom Dockerfile. In your serverโs settings to define environment variables or .env file, add: `API_TOKEN=your_brightdata_api_token WEB_UNLOCKER_ZONE=optional_zone_name BROWSER_AUTH=optional_browser_auth` Use the following Docker command to run Supergateway: `docker run -it --rm -p 8000:8000 supercorp/supergateway \ --stdio "npx -y @brightdata/mcp /" \ --port 8000` Deploy it and copy the web server URL, then append /sse into it. Your SSE server should now be accessible at: https://your_server_url/sse For more installation guides, please refer to https://github.com/supercorp-ai/supergateway.git. ** Method 2: Run Supergateway in the same web service as the N8N instance This method will only work for self-hosted N8N. a. Set Required Environment Variables In your server's settings to define environment variables or .env file, add: API_TOKEN=your_brightdata_api_token WEB_UNLOCKER_ZONE=optional_zone_name BROWSER_ZONE=optional_browser_zone_name b. Run Supergateway in Background npx -y supergateway --stdio "npx -y @brightdata/mcp" --port 8000 --baseUrl http://localhost:8000 --ssePath /sse --messagePath /message Use the command above to execute it through the cloud shell or set it as a pre-deploy command. Your SSE server should now be accessible at: http://localhost:8000/sse For more installation guides, please refer to https://github.com/supercorp-ai/supergateway.git. * *Method 3: Configure via Smithery.ai* (Easiest) If you don't want additional setup and want to test it right away, follow these instructions: Visit https://smithery.ai/server/@luminati-io/brightdata-mcp/tools to: Signup (if you are new to Smithery) Create an API key Define environment variables via a profile Retrieve your SSE server HTTP URL Import the Workflow Open N8N. Import the JSON workflow file included with this template. Update any nodes referencing external services (e.g., OpenRouter, Telegram). Setup Telegram Integration If you haven't setup a bot in Telegram, below is the instruction how to create one using BotFather: Search for @BotFather in Telegram and start a conversation with it. Send the command /newbot to create a new bot. You'll be prompted to enter a name and a unique username for your bot. BotFather will provide you with an access token, which you'll need to use to interact with the bot's API. Edit the HTTP Request node in the workflow. Configure the URL as follows: https://api.telegram.org/bot+your_telegram_bot_token+/setWebhook?url=+your_webhook_url Replace +your_telegram_bot_token+ with your actual Telegram bot token. Replace +your_webhook_url+ with the URL from the Webhook Trigger node in the workflow. This will set up Telegram to forward messages to your n8n agent. ๐ Workflow Functionality (Summary) The user submits a message via chat. Memory** nodes retain context for multi-turn conversations. The mapped tool is executed and results are returned contextually. ๐ง Optional memory buffers and memory manager nodes keep the interaction context-aware. ๐งฉ Use Cases Data Scraping on Demand**: Launch scraping tasks via chat. Lead Generation Bots**: Enrich or validate leads with MCP tools. AI-Powered Customer Support**: Classify and answer queries with real-time data tools. Workflow Assistants**: Let teams run backend processes like lookups or report generation using plain language. ๐ ๏ธ Customization Classifier Prompt & Logic**: Tweak the AIโs prompt and tool-matching schema to better fit your use case. Memory Configuration**: Adjust retention policies and context depth. Tool Execution Sub-Workflow**: Extend for retries, logging, or chaining actions. Omni-Channel Support**: Connect via webhooks to chat interfaces like Slack, WhatsApp, Telegram, or custom UIs. โ Summary This template equips you with a powerful no-code/low-code AI agent that translates conversation into real-world action. Using Bright Dataโs MCP tools through natural language, it enables teams to automate and scale data-driven tasks effortlessly.
by Wikus Bergh
Who is this for? This template is ideal for n8n administrators, automation engineers, and DevOps teams who want to maintain bidirectional synchronization between their n8n workflows and GitHub repositories. It helps teams keep their workflow backups up-to-date and ensures consistency between their n8n instance and version control system. What problem is this workflow solving? Managing workflow versions across n8n and GitHub can become complex when changes happen in both places. This workflow solves that by automatically synchronizing workflows bidirectionally, ensuring that the most recent version is always available in both systems without manual intervention or version conflicts. What this workflow does: Runs on a weekly schedule (every Monday) to check for synchronization needs. Fetches all workflows from your n8n instance and compares them with GitHub repository files. Identifies workflows that exist only in n8n and uploads them to GitHub as JSON backups. Identifies workflows that exist only in GitHub and creates them in your n8n instance. For workflows that exist in both places, compares timestamps and syncs the most recent version: If n8n version is newer โ Updates GitHub with the latest workflow If GitHub version is newer โ Updates n8n with the latest workflow Automatically handles file naming, encoding/decoding, and commit messages with timestamps. Setup: Connect GitHub: Configure GitHub API credentials in the GitHub nodes. Note: Use a GitHub Personal Access Token (classic) with repo permissions to read and write workflow files. Connect n8n API: Provide your n8n API credentials in the n8n nodes. Check this doc Configure GitHub Details in the Set GitHub Details node: github_account_name: Your GitHub username or organization github_repo_name: The repository name where workflows should be stored repo_workflows_path: The folder path in your repo (e.g., workflows or n8n-workflows) Adjust Schedule: Modify the Schedule Trigger if you want a different sync frequency (currently set to weekly on Mondays). Test the workflow: Run it manually first to ensure all connections and permissions are working correctly. How to customize this workflow to your needs: Change sync frequency**: Modify the Schedule Trigger to run daily, hourly, or on-demand. Add filtering**: Extend the Filter node to exclude certain workflows (e.g., test workflows, templates). Add notifications**: Insert Slack, email, or webhook notifications to report sync results. Implement conflict resolution**: Add custom logic for handling workflows with the same timestamp. Add workflow validation**: Include checks to validate workflow JSON before syncing. Branch management**: Modify to sync to different branches or create pull requests instead of direct commits. Backup retention**: Add logic to maintain multiple versions or archive old workflows. Key Features: Bidirectional sync**: Handles changes from both n8n and GitHub Timestamp-based conflict resolution**: Always keeps the most recent version Automatic file naming**: Converts workflow names to valid filenames Base64 encoding/decoding**: Properly handles JSON workflow data Comprehensive comparison**: Uses dataset comparison to identify differences Automated commits**: Includes timestamps in commit messages for traceability This automated synchronization workflow provides a robust backup and version control solution for n8n workflows, ensuring your automation assets are always safely stored and consistently available across environments.
by Floyd Mahou
How it works โข Transcribes a WhatsApp voice or text message from a prospect using Whisper or GPT โข Extracts key information (name, need, context, urgency) via AI โข Matches the most relevant service pack by comparing the prospectโs need with Airtable data โข Dynamically fills a branded template via APITEMPLATE (HTML or PDF) โข Generates a clean, personalized business proposal โ including dynamic links (payment, calendar, etc.) โข Sends the final PDF back instantly via WhatsApp or email Set up steps โข โฑ Estimated setup time: 45โ60 minutes โข โ Youโll need: โโฆ WhatsApp Business Cloud API access (with webhook configured) โโฆ OpenAI API key (Whisper + GPT) โโฆ Airtable (to store service packs and client input) โโฆ APITEMPLATE account (template with placeholders like {{nom}}, {{prix}}, {{lien_reservation}}, etc.) โโฆ n8n instance (cloud or self-hosted) โข ๐ฆ Create your service packs in Airtable with associated links (Stripe, Calendlyโฆ) โข ๐ The proposal auto-includes these links dynamically inside the PDF โข ๐ Workflow orchestrates the end-to-end process: from WhatsApp input to PDF delivery
by Ranjan Dailata
Notice Community nodes can only be installed on self-hosted instances of n8n. Who this is for The Automated Resume Job Matching Engine is an intelligent workflow designed for career platforms, HR tech startups, recruiting firms, and AI developers who want to streamline job-resume matching using real-time data from LinkedIn and job boards. This workflow is tailored for: HR Tech Founders** - Building next-gen recruiting products Recruiters & Talent Sourcers** - Seeking automated candidate-job fit evaluation Job Boards & Portals** - Enriching user experience with AI-driven job recommendations Career Coaches & Resume Writers** - Offering personalized job fit analysis AI Developers** - Automating large-scale matching tasks using LinkedIn and job data What problem is this workflow solving? Manually matching a resume to job description is time-consuming, biased, and inefficient. Additionally, accessing live job postings and candidate profiles requires overcoming web scraping limitations. This workflow solves: Automated LinkedIn profile and job post data extraction using Bright Data MCP infrastructure Semantic matching between job requirements and candidate resume using OpenAI 4o mini Pagination handling for high-volume job data End-to-end automation from scraping to delivery via webhook and persisting the job matched response to disk What this workflow does Bright Data MCP for Job Data Extraction Uses Bright Data MCP Clients to extract multiple job listings (supports pagination) Pulls job data from LinkedIn with the pre-defined filtering criteria's OpenAI 4o mini LLM Matching Engine Extracts paginated job data from the Bright Data MCP extracted info via the MCP scrape_as_html tool. Extracts textual job description information via the scraped job information by leveraging the Bright Data MCP scrape_as_html tool. AI Job Matching node handles the job description and the candidate resume compare to generate match scores with insights Data Delivery Sends final match report to a Webhook Notification endpoint Persistence of AI matched job response to disk Pre-conditions Knowledge of Model Context Protocol (MCP) is highly essential. Please read this blog post - model-context-protocol You need to have the Bright Data account and do the necessary setup as mentioned in the Setup section below. You need to have the Google Gemini API Key. Visit Google AI Studio You need to install the Bright Data MCP Server @brightdata/mcp You need to install the n8n-nodes-mcp Setup Please make sure to setup n8n locally with MCP Servers by navigating to n8n-nodes-mcp Please make sure to install the Bright Data MCP Server @brightdata/mcp on your local machine. Sign up at Bright Data. Navigate to Proxies & Scraping and create a new Web Unlocker zone by selecting Web Unlocker API under Scraping Solutions. Create a Web Unlocker proxy zone called mcp_unlocker on Bright Data control panel. In n8n, configure the OpenAi account credentials. In n8n, configure the credentials to connect with MCP Client (STDIO) account with the Bright Data MCP Server as shown below. Make sure to copy the Bright Data API_TOKEN within the Environments textbox above as API_TOKEN=<your-token>. Update the Set input fields for candidate resume, keywords and other filtering criteria's. Update the Webhook HTTP Request node with the Webhook endpoint of your choice. Update the file name and path to persist on disk. How to customize this workflow to your needs Target Different Job Boards Set input fields with the sites like Indeed, ZipRecruiter, or Monster Customize Matching Criteria Adjust the prompt inside the AI Job Match node Include scoring metrics like skills match %, experience relevance, or cultural fit Automate Scheduling Use a Cron Node to periodically check for new jobs matching a profile Set triggers based on webhook or input form submissions Output Customization Add Markdown/PDF formatting for report summaries Extend with Google Sheets export for internal analytics Enhance Data Security Mask personal info before sending to external endpoints
by Ranjan Dailata
Who this is for? Indeed Data Scraper & Summarization with Airtable, Bright Data and Google Gemini is an automated workflow that extracts company profile information from Indeed using Bright Data Web Unlocker, transforms the data using Google Gemini's LLM, and forward the transformed response with the summary to a specified webhook for downstream use. This workflow is tailored for: Recruiters and HR teams who want quick summaries of companies listed on Indeed. Market researchers and analysts needing structured insights into businesses. Founders, investors, and consultants scouting potential competitors, partners, or clients. No-code enthusiasts looking to automate data extraction and enrichment pipelines without manual scraping or parsing. What problem is this workflow solving? Manually gathering structured information about companies on Indeed is time-consuming and inconsistent. Pages vary in structure, and extracting clean, digestible summaries can require technical scraping expertise. This workflow automates: Extracting company data from Indeed reliably using Bright Data Web Unlocker. Cleaning and summarizing the extracted content using Google Gemini LLM. Storing structured insights directly into Airtable for easy access and further workflows. Eliminates manual research, saves hours, and produces AI-enhanced, easily searchable records. What this workflow does Triggers on-demand. Pulls company page URLs from Airtable. Scrapes content from each Indeed company profile using Bright Data Web Unlocker. Sends the raw HTML to Google Gemini for extraction and summarization. Sends the summarized data to other platforms via a Webhook notification mechanism. Setup Sign up at Bright Data. Navigate to Proxies & Scraping and create a new Web Unlocker zone by selecting Web Unlocker API under Scraping Solutions. In n8n, configure the Header Auth account under Credentials for Bright Data. The Value field should be set with the Bearer XXXXXXXXXXXXXX. The XXXXXXXXXXXXXX should be replaced by the Web Unlocker Token. In n8n, configure the Google Gemini(PaLM) Api account with the Google Gemini API key (or access through Vertex AI or proxy). In n8n, configure the Airtable Personal Access Token account under Credentials. Update the Webhook Notifier with the Webhook endpoint of your choice. How to customize this workflow to your needs This workflow is built to be flexible - whether you're a company or a market researcher, entrepreneur, or data analyst. Here's how you can adapt it to fit your specific use case: Extend the scraper**: Modify Bright Data targets to pull job listings, salaries, or employee reviews via the Airtable data source. Customize the summary prompt**: Ask Gemini to extract different attributes hiring trends, practices etc. Routing the output to different destinations**: Send summaries or transformed response to Google Sheets, Airtable, or CRMs like HubSpot or Salesforce etc.
by Ranjan Dailata
Notice Community nodes can only be installed on self-hosted instances of n8n. Who this is for The Brave Search Structured Data Extractor workflow is designed for professionals and teams that need high-quality, structured insights from Brave search results in real time. Whether you're performing market research, tracking competitors, training AI models, or powering content engines, this workflow offers a robust and automated solution. This workflow is tailored for: Market Researchers - Who analyze trends across multimedia channels AI Developers - Who require clean, structured datasets for model fine-tuning SEO & Content - Analysts looking to monitor visibility across news, images, and videos Media Researchers - Curating timely and relevant information across formats Automation Engineers - Integrating search insights into downstream workflows What problem is this workflow solving? Traditional web scraping and search result parsing is fragmented, inconsistent, and prone to errors, especially when dealing with multimedia (images, videos, news) data from search engines. This workflow provides: Centralized Brave search data extraction across all content types. Switches the search execution based upon the type of search that is being set. ex: news, images, videos, all Automated structured data transformation using Google Gemini Unified output persistence and notification across disk, webhook, and Google Sheets What this workflow does Input Configuration Define your Brave search query Set the search type: videos, images, news, or all Configure your Bright Data MCP zone Bright Data MCP Search Execution Initiates a Brave search via Bright Data MCP using the correct URL pattern for each search type Returns raw HTML of search results Google Gemini LLM Structured Data Extraction Transforms raw results into structured data (e.g., title, URL, source, snippet) Output Handling Save to disk (e.g., JSON or CSV file) Send Webhook notification with structured data (e.g., Slack, internal dashboards) Store in Google Sheets for team-wide access or dashboarding Pre-conditions Knowledge of Model Context Protocol (MCP) is highly essential. Please read this blog post - model-context-protocol You need to have the Bright Data account and do the necessary setup as mentioned in the Setup section below. You need to have the Google Gemini API Key. Visit Google AI Studio You need to install the Bright Data MCP Server @brightdata/mcp You need to install the n8n-nodes-mcp Setup Please make sure to setup n8n locally with MCP Servers by navigating to n8n-nodes-mcp Please make sure to install the Bright Data MCP Server @brightdata/mcp on your local machine. Sign up at Bright Data. Create a Web Unlocker proxy zone called mcp_unlocker on Bright Data control panel. Navigate to Proxies & Scraping and create a new Web Unlocker zone by selecting Web Unlocker API under Scraping Solutions. In n8n, configure the Google Gemini(PaLM) Api account with the Google Gemini API key (or access through Vertex AI or proxy). In n8n, configure the credentials to connect with MCP Client (STDIO) account with the Bright Data MCP Server as shown below. Make sure to copy the Bright Data API_TOKEN within the Environments textbox above as API_TOKEN=<your-token> How to customize this workflow to your needs Enhance Output Analysis Add additional LLM prompts for topic classification, sentiment scoring, or trend forecasting. Output Format Options Choose to output CSV, Markdown, or HTML reports based on your integration target. Schedule Automation Trigger the workflow on a schedule (daily/weekly) to keep monitoring topical content.
by VipinW
Apply to jobs automatically from Google Sheets with status tracking Who's it for Job seekers who want to streamline their application process, save time on repetitive tasks, and never miss following up on applications. Perfect for anyone managing multiple job applications across different platforms. What it does This workflow automatically applies to jobs from a Google Sheet, tracks application status, and keeps you updated with notifications. It handles the entire application lifecycle from submission to status monitoring. Key features: Reads job listings from Google Sheets with filtering by priority and status Automatically applies to jobs on LinkedIn, Indeed, and other platforms Updates application status in real-time Checks application status every 2 days and notifies you of changes Sends email notifications for successful applications and status updates Prevents duplicate applications and manages rate limiting How it works The workflow runs on two main schedules: Daily Application Process (9 AM, weekdays): Reads your job list from Google Sheets Filters for jobs marked as "Not Applied" with Medium/High priority Processes each job individually to prevent rate limiting Applies to jobs using platform-specific APIs (LinkedIn, Indeed, etc.) Updates the sheet with application status and reference ID Sends confirmation email for each application Status Monitoring (Every 2 days at 10 AM): Checks all jobs with "Applied" status Queries job platforms for application status updates Updates the sheet if status has changed Sends notification emails for status changes (interviews, rejections, etc.) Requirements Google account with Google Sheets access Gmail account for notifications Resume stored online (Google Drive, Dropbox, etc.) API access to job platforms (LinkedIn, Indeed) - optional for basic version n8n instance (self-hosted or cloud) How to set up Step 1: Create Your Job Tracking Sheet Create a Google Sheet with these exact column headers: | Job_ID | Company | Position | Status | Applied_Date | Last_Checked | Application_ID | Notes | Job_URL | Priority | |--------|---------|----------|--------|--------------|--------------|----------------|-------|---------|----------| | JOB001 | Google | Software Engineer | Not Applied | | | | | https://careers.google.com/jobs/123 | High | | JOB002 | Microsoft | Product Manager | Not Applied | | | | | https://careers.microsoft.com/jobs/456 | Medium | Column explanations: Job_ID**: Unique identifier (JOB001, JOB002, etc.) Company**: Company name Position**: Job title Status**: Not Applied, Applied, Under Review, Interview Scheduled, Rejected, Offer Applied_Date**: Auto-filled when application is submitted Last_Checked**: Auto-updated during status checks Application_ID**: Platform reference ID (auto-generated) Notes**: Additional information or application notes Job_URL**: Direct link to job posting Priority**: High, Medium, Low (Low priority jobs are skipped) Step 2: Configure Google Sheets Access In n8n, go to Credentials โ Add Credential Select Google Sheets OAuth2 API Follow the OAuth setup process to authorize n8n Test the connection with your job tracking sheet Step 3: Set Up Gmail Notifications Add another credential for Gmail OAuth2 API Authorize n8n to send emails from your Gmail account Test by sending a sample email Step 4: Update Workflow Configuration In the "Set Configuration" node, update these values: spreadsheetId**: Your Google Sheet ID (found in the URL) resumeUrl**: Direct link to your resume (make sure it's publicly accessible) yourEmail**: Your email address for notifications coverLetterTemplate**: Customize your cover letter template Step 5: Customize Application Logic For basic version (no API access): The workflow includes placeholder HTTP requests that you can replace with actual job platform integrations. For advanced version (with API access): Replace LinkedIn/Indeed HTTP nodes with actual API calls Add your API credentials to n8n's credential store Update the platform detection logic for additional job boards Step 6: Test and Activate Add 1-2 test jobs to your sheet with "Not Applied" status Run the workflow manually to test Check that the sheet gets updated and you receive notifications Activate the workflow to run automatically How to customize the workflow Adding New Job Platforms Update Platform Detection: Modify the "Check Platform Type" node to recognize new job board URLs Add New Application Node: Create HTTP request nodes for new platforms Update Status Checking: Add status check logic for the new platform Customizing Application Strategy Rate Limiting**: Add "Wait" nodes between applications (recommended: 5-10 minutes) Application Timing**: Modify the cron schedule to apply during optimal hours Priority Filtering**: Adjust the filter conditions to match your criteria Multiple Resumes**: Use conditional logic to select different resumes based on job type Enhanced Notifications Slack Integration**: Replace Gmail nodes with Slack for team notifications Discord Webhooks**: Send updates to Discord channels SMS Notifications**: Use Twilio for urgent status updates Dashboard Updates**: Connect to Notion, Airtable, or other productivity tools Advanced Features AI-Powered Personalization**: Use OpenAI to generate custom cover letters Job Scoring**: Implement scoring logic based on job requirements vs. your skills Interview Scheduling**: Auto-schedule interviews when status changes Follow-up Automation**: Send follow-up emails after specific time periods Important Notes Platform Compliance Always respect rate limits to avoid being blocked Follow each platform's Terms of Service Use official APIs when available instead of web scraping Don't spam job boards with excessive applications Data Privacy Store credentials securely using n8n's credential store Don't hardcode API keys or personal information in nodes Regularly review and clean up old application data Ensure your resume link is secure but accessible Quality Control Start with a small number of jobs to test the workflow Review application success rates and adjust strategy Monitor for errors and set up proper error handling Keep your job list updated and remove expired postings This workflow transforms job searching from a manual, time-consuming process into an automated system that maximizes your application efficiency while maintaining quality and compliance.
by Ranjan Dailata
Disclaimer This template is only available on n8n self-hosted as it's making use of the community node for MCP Client. Who this is for? The Extract, Transform LinkedIn Data with Bright Data MCP Server & Google Gemini workflow is an automated solution that scrapes LinkedIn content via Bright Data MCP Server then transforms the response using a Gemini LLM. The final output is sent via webhook notification and also persisted on disk. This workflow is tailored for:โ Data Analysts : Who require structured LinkedIn datasets for analytics and reporting. Marketing and Sales Teams : Looking to enrich lead databases, track company updates, and identify market trends. Recruiters and Talent Acquisition Specialists : Who want to automate candidate sourcing and company research. AI Developers : Integrating real-time professional data into intelligent applications. Business Intelligence Teams : Needing current and comprehensive LinkedIn data to drive strategic decisions. What problem is this workflow solving? Gathering structured and meaningful information from the web is traditionally slow, manual, and error-prone. This workflow solves: Reliable web scraping using Bright Data MCP Server LinkedIn tools. LinkedIn person and company web scrapping with AI Agents setup with the Bright Data MCP Server tools. Data extraction and transformation with Google Gemini LLM. Persists the LinkedIn person and company info to disk. Performs a Webhook notification with the LinkedIn person and company info. What this workflow does? This n8n workflow performs the following steps: Trigger: Start manually. Input URL(s): Specify the LinkedIn person and company URL. Web Scraping (Bright Data): Use Bright Data's MCP Server, LinkedIn tools for the person and company data extract. Data Transformation & Aggregation: Uses the Google LLM for handling the data transformation. Store / Output: Save results into disk and also performs a Webhook notification. Pre-conditions Knowledge of Model Context Protocol (MCP) is highly essential. Please read this blog post - model-context-protocol You need to have the Bright Data account and do the necessary setup as mentioned in the Setup section below. You need to have the Google Gemini API Key. Visit Google AI Studio You need to install the Bright Data MCP Server @brightdata/mcp You need to install the n8n-nodes-mcp Setup Please make sure to setup n8n locally with MCP Servers by navigating to n8n-nodes-mcp Please make sure to install the Bright Data MCP Server @brightdata/mcp on your local machine. Sign up at Bright Data. Navigate to Proxies & Scraping and create a new Web Unlocker zone by selecting Web Unlocker API under Scraping Solutions. Create a Web Unlocker proxy zone called mcp_unlocker on Bright Data control panel. In n8n, configure the Google Gemini(PaLM) Api account with the Google Gemini API key (or access through Vertex AI or proxy). In n8n, configure the credentials to connect with MCP Client (STDIO) account with the Bright Data MCP Server as shown below. Make sure to copy the Bright Data API_TOKEN within the Environments textbox above as API_TOKEN=<your-token>. Update the LinkedIn URL person and company workflow. Update the Webhook HTTP Request node with the Webhook endpoint of your choice. Update the file name and path to persist on disk. How to customize this workflow to your needs Different Inputs: Instead of static URLs, accept URLs dynamically via webhook or form submissions. Data Extraction: Modify the LinkedIn Data Extractor node with the suitable prompt to format the data as you wish. Outputs: Update the Webhook endpoints to send the response to Slack channels, Airtable, Notion, CRM systems, etc.
by Ranjan Dailata
Notice Community nodes can only be installed on self-hosted instances of n8n. Who this is for The Legal Case Research Extractor is a powerful automated workflow designed for legal tech teams, researchers, law firms, and data scientists focused on transforming unstructured legal case data into actionable, structured insights. This workflow is tailored for: Legal Researchers automating case law data mining Litigation Support Teams handling large volumes of case records LawTech Startups building AI-powered legal research assistants Compliance Analysts extracting case-specific insights AI Developers working on legal NLP, summarization, and search engines What problem is this workflow solving? Legal case data is often locked in semi-structured or raw HTML formats, scattered across jurisdiction-specific websites. Manually extracting and processing this data is tedious and inefficient. This workflow automates: Extraction of legal case data via Bright Data's powerful MCP infrastructure Parsing of HTML into clean, readable text using Google Gemini LLM Structuring and delivering the output through webhook and file storage What this workflow does Input Set the Legal Case Research URL node is responsible for setting the legal case URL for the data extraction. Bright Data MCP Data Extractor Bright Data MCP Client For Legal Case Research node is responsible for the legal case extraction via the Bright Data MCP tool - scrape_as_html Case Extractor Google Gemini based Case Extractor is responsible for producing a paginated list of cases Loop through Legal Case URLs Receives a collection of legal case links to process Each URL represents a different case from a target legal website Bright Data MCP Scraping Utilizes Bright Dataโs scrape_as_html MCP mode Retrieves raw HTML content of each legal case Google Gemini LLM Extraction Transforms raw HTML into clean, structured text Performs additional information extraction if required (e.g., case summary, court, jurisdiction etc.) Webhook Notification Sends extracted legal case content to a configurable webhook URL Enables downstream processing or storage in legal databases Binary Conversion & File Persistence Converts the structured text to binary format Saves the final response to disk for archival or further processing Pre-conditions Knowledge of Model Context Protocol (MCP) is highly essential. Please read this blog post - model-context-protocol You need to have the Bright Data account and do the necessary setup as mentioned in the Setup section below. You need to have the Google Gemini API Key. Visit Google AI Studio You need to install the Bright Data MCP Server @brightdata/mcp You need to install the n8n-nodes-mcp Setup Please make sure to setup n8n locally with MCP Servers by navigating to n8n-nodes-mcp Please make sure to install the Bright Data MCP Server @brightdata/mcp on your local machine. Sign up at Bright Data. Create a Web Unlocker proxy zone called mcp_unlocker on Bright Data control panel. Navigate to Proxies & Scraping and create a new Web Unlocker zone by selecting Web Unlocker API under Scraping Solutions. In n8n, configure the Google Gemini(PaLM) Api account with the Google Gemini API key (or access through Vertex AI or proxy). In n8n, configure the credentials to connect with MCP Client (STDIO) account with the Bright Data MCP Server as shown below. Make sure to copy the Bright Data API_TOKEN within the Environments textbox above as API_TOKEN=<your-token> How to customize this workflow to your needs Target New Legal Portals Modify the legal case input URLs to scrape from different state or federal case databases Customize LLM Extraction Modify the prompt to extract specific fields: case number, plaintiff, case summary, outcome, legal precedents etc. Add a summarization step if needed Enhance Loop Handling Integrate with a Google Sheet or API to dynamically fetch case URLs Add error handling logic to skip failed cases and log them Improve Security & Compliance Redact sensitive information before sending via webhook Store processed case data in encrypted cloud storage Output Formats Save as PDF, JSON, or Markdown Enable output to cloud storage (S3, Google Drive) or legal document management systems