by Dr. Firas
AI-powered WhatsApp booking system with instant SMS confirmations Who is this for? This workflow is designed for solo entrepreneurs, consultants, coaches, clinics, or any business that handles client appointments and wants to automate the entire scheduling experience via WhatsApp — without the need for live agents. What problem is this workflow solving? Responding to inbound messages, collecting booking details, suggesting available times, and sending reminders can be a huge time drain. This workflow eliminates manual handling by: Automating WhatsApp conversations with an AI assistant Booking appointments directly into Cal.com Sending timely SMS reminders before appointments It ensures you never miss a lead or a follow-up — even while you sleep. What this workflow does From a single WhatsApp message, the workflow: Triggers via a WhatsApp webhook Uses GPT-4 to handle conversation flow and qualify the prospect Collects name, email, selected service Calls Cal.com API to fetch available time slots Books the appointment and stores it in Google Sheets Sends a confirmation message via WhatsApp Periodically scans for upcoming appointments Sends SMS reminders to clients 2 hours before their session Setup Connect your Webhook node to a WhatsApp API (e.g., 360dialog, Twilio, or Ultramsg) Add your OpenAI API key for the GPT-4 nodes Configure your Cal.com API key and set your calendar ID Link your Google Sheets with fields like: name, email, date, time, status, reminder_sent Connect your SMS service (e.g., sms77) with API credentials Adjust the schedule in the reminder node as needed How to customize this workflow to your needs Change the language or tone of the AI assistant** by editing the system prompt in the GPT node Filter available time slots** by service, team member, or duration Modify the reminder timing** (e.g., 1 hour before, 24h before, etc.) Add conditional logic** to route users to different booking flows based on their responses Integrate additional CRMs** or notification channels like email or Slack 📄 Documentation: Notion Guide Need help customizing? Contact me for consulting and support : Linkedin / Youtube
by Joseph LePage
This n8n workflow template is designed to integrate a DeepSeek AI agent with Telegram, incorporating long-term memory capabilities for personalized and context-aware responses. Here's a detailed breakdown: Core Features Telegram Integration Uses a webhook to receive messages from Telegram users. Validates user identity and message content before processing. AI-Powered Responses Employs DeepSeek's AI models for conversational interactions. Includes memory capabilities to personalize responses based on past interactions. Error Handling Sends an error message if the input cannot be processed. Model Options 🧠 DeepSeek-V3 Chat**: Handles general conversational tasks. DeepSeek-R1 Reasoning**: Provides advanced reasoning capabilities for complex queries. Memory Buffer Window**: Maintains session context for ongoing conversations. Quick Setup 🛠️ Telegram Webhook Configuration Set up a webhook using the Telegram Bot API: https://api.telegram.org/bot{my_bot_token}/setWebhook?url={url_to_send_updates_to} Replace {my_bot_token} with your bot's token and {url_to_send_updates_to} with your n8n webhook URL. Verify the webhook setup using: https://api.telegram.org/bot{my_bot_token}/getWebhookInfo DeepSeek API Configuration Base URL: https://api.deepseek.com Obtain your API key from the DeepSeek platform. Implementation Details 🔧 User Validation The workflow validates the user's first name, last name, and ID using data from incoming Telegram messages. Only authorized users proceed to the next steps. Message Routing Routes messages based on their type (text, audio, or image) using a switch node. Ensures appropriate handling for each message format. AI Agent Interaction Processes text input using DeepSeek-V3 or DeepSeek-R1 models. Customizable system prompts define the AI's behavior and rules, ensuring user-centric and context-aware responses. Memory Management Retrieves long-term memories stored in Google Docs to enhance personalization. Saves new memories based on user interactions, ensuring continuity across sessions.
by PollupAI
Never forget to send a satisfaction survey again! This workflow helps you automatically send CSAT surveys when a Freshdesk ticket is marked “Resolved” – and logs every response in Google Sheets for easy analysis, reporting, and escalation workflows. 💡 Built for CS and ops teams who care about real feedback This template is perfect for: Customer Support Teams who want timely, consistent survey delivery after every resolved ticket. Ops Leads & Admins tired of managing spreadsheets and survey tools manually. Businesses using Freshdesk looking for a no-code feedback loop. Automation fans who want to track, trigger, and take action — automatically. 🧩 What problem does it solve? Manual survey processes are slow, inconsistent, and hard to scale. This automation ensures: Fast survey delivery when experiences are still fresh. No duplicate emails thanks to a built-in tracking system. Centralized feedback in a Google Sheet — no more digging through platforms. Data you can act on, like triggering Slack alerts for poor scores. ⚙️ How it works 📨 Part 1: Auto-send the survey when a ticket is resolved Trigger: Workflow runs on a schedule (or manually via “Test”). Pull ticket status from Freshdesk. Compare ticket status to the last known status in Google Sheets. Detect resolution: If status = “Resolved” (ID 4), move forward. Update the Google Sheet to track that the survey was sent. Fetch the customer’s email from Freshdesk. Create & send the survey email, personalized with ticket info and your brand. Convert Markdown → HTML for a well-formatted email. 📥 Part 2: Collect responses and store in Sheets Form Trigger: Customer clicks the survey link and fills in the form. Capture responses (e.g. rating + comments). Log feedback in a second Google Sheet for analysis. You can extend this by adding escalation steps (e.g. flagging 1–2 star ratings to managers). 🚀 Setup Instructions 🔐 Connect your tools Freshdesk**: Add your API credentials to the get tickets and get client nodes. Google Sheets**: Authenticate in the get existing tickets, update status, and save survey nodes. Email (SMTP)**: Add your SMTP details in the “Send Email” node, or swap in Gmail, SendGrid, etc. 🛠 Set your data In the Set your data node, enter: Your name, email, company, and position Your survey form link (see below) 🔗 Get the form link Activate the workflow (toggle it ON) Go to the “Survey” (Form Trigger) node Copy the Production URL Paste it into the survey link field in the Set your data node 🧾 Prepare your Google Sheets Sheet 1: Freshdesk Tickets (status tracking) Used by: get existing tickets update status Create a new empty Google Sheet. Add the Spreadsheet ID + Sheet Name into the nodes. Sheet 2: Feedback freshdesk (survey responses) Used by: save survey to google sheet Create a new sheet or tab. It will auto-create columns based on your survey form field labels. Add the Spreadsheet ID + Sheet Name/GID to the save node. 🔧 Customize the workflow 📝 Survey Questions Modify them in the Survey (Form Trigger) node. Adjust the save survey to google sheet node as needed (or use auto-map). 💬 Email Content Edit the subject and message in the Create the email text (Set) node. 🏷 Freshdesk Status ID If your “Resolved” status ID isn’t 4, update the second condition in the If ticket resolved node. 📉 Escalate poor feedback Add logic after the save survey to google sheet node: If rating is low: Notify Slack Create a new internal ticket Email a team lead 🔁 Schedule Trigger Adjust the Schedule Trigger node to your desired interval (e.g., hourly). 🔄 Use a Webhook Instead (Optional) If Freshdesk supports ticket webhook events, swap the schedule trigger for a Webhook Trigger node to send surveys instantly on ticket resolution. 🤖 Why Pollup AI is building this At Pollup AI, we help CS and support teams stop drowning in tools and manual tasks. This template is part of our growing AI agent library: plug-and-play automations that connect your tools, clean your data, and free up your time – without writing a line of code. Try this workflow and let Pollup AI handle the boring parts, so your team can focus on what customers are really saying. Learn more at Pollup AI
by David Ashby
Complete MCP server exposing all Oura Tool operations to AI agents. Zero configuration needed - all 4 operations pre-built. ⚡ Quick Setup Need help? Want access to more workflows and even live Q&A sessions with a top verified n8n creator.. All 100% free? Join the community Import this workflow into your n8n instance Activate the workflow to start your MCP server Copy the webhook URL from the MCP trigger node Connect AI agents using the MCP URL 🔧 How it Works • MCP Trigger: Serves as your server endpoint for AI agent requests • Tool Nodes: Pre-configured for every Oura Tool operation • AI Expressions: Automatically populate parameters via $fromAI() placeholders • Native Integration: Uses official n8n Oura Tool tool with full error handling 📋 Available Operations (4 total) Every possible Oura Tool operation is included: 🔧 Profile (1 operations) • Get a profile 🔧 Summary (3 operations) • Get activity summary • Get readiness summary • Get sleep summary 🤖 AI Integration Parameter Handling: AI agents automatically provide values for: • Resource IDs and identifiers • Search queries and filters • Content and data payloads • Configuration options Response Format: Native Oura Tool API responses with full data structure Error Handling: Built-in n8n error management and retry logic 💡 Usage Examples Connect this MCP server to any AI agent or workflow: • Claude Desktop: Add MCP server URL to configuration • Custom AI Apps: Use MCP URL as tool endpoint • Other n8n Workflows: Call MCP tools from any workflow • API Integration: Direct HTTP calls to MCP endpoints ✨ Benefits • Complete Coverage: Every Oura Tool operation available • Zero Setup: No parameter mapping or configuration needed • AI-Ready: Built-in $fromAI() expressions for all parameters • Production Ready: Native n8n error handling and logging • Extensible: Easily modify or add custom logic > 🆓 Free for community use! Ready to deploy in under 2 minutes.
by phil
AI-Powered SEO Keyword Research Workflow with n8n > automates comprehensive keyword research for content creation Table of Contents Introduction Workflow Architecture NocoDB Integration Data Flow Core Components Setup Requirements Possible Improvements Introduction This n8n workflow automates SEO keyword research using AI and data-driven analytics. It combines OpenAI's language models with DataForSEO's analytics to generate comprehensive keyword strategies for content creation. The workflow is triggered by a webhook from NocoDB, processes the input data through multiple stages, and returns a detailed content brief with optimized keywords. Workflow Architecture The workflow follows a structured process: Input Collection: Receives data via webhook from NocoDB Topic Expansion: Generates keywords using AI Keyword Metrics Analysis: Gathers search volume, CPC, and difficulty metrics Competitor Analysis: Analyzes competitor content for ranking keywords Final Strategy Creation: Combines all data to generate a comprehensive keyword strategy Output Storage: Saves results back to NocoDB and sends notifications NocoDB Integration Database Structure The workflow integrates with two tables in NocoDB: Input Table Schema This table collects the input parameters for the keyword research: | Field Name | Type | Description | | --------------- | ------------- | --------------------------------------------------------------------------- | | ID | Auto Number | Unique identifier | | Primary Topic | Text | The main keyword/topic to research | | Competitor URLs | Text | Comma-separated list of competitor websites | | Target Audience | Single Select | Description of the target audience (Solopreneurs, Marketing Managers, etc.) | | Content Type | Single Select | Type of content (Blog, Product page, etc.) | | Location | Single Select | Target geographic location | | Language | Single Select | Target language for keywords | | Status | Single Select | Workflow status (Pending, Started, Done) | | Start Research | Checkbox | Active Workflow when you set this to true | Output Table Schema This table stores the generated keyword strategy: | Field Name | Type | Description | | ------------------ | ----------- | ------------------------------------------------ | | ID | Auto Number | Unique identifier | | primary_topic_used | Text | The topic that was researched | | report_content | Long Text | The complete keyword strategy in Markdown format | | generatedAt | Datetime | Automatically generated by NocoDb | Webhook Settings NocoDB Webhook Settings Data Flow The workflow handles data in the following sequence: Webhook Trigger: Receives input from NocoDB when a new keyword research request is created Field Extraction: Extracts primary topic, competitor URLs, audience, and other parameters AI Topic Expansion: Uses OpenAI to generate related keywords, categorized by type and intent Keyword Analysis: Sends primary keywords to DataForSEO to get search volume, CPC, and difficulty Competitor Research: Analyzes competitor pages to identify their keyword rankings Strategy Generation: Combines all data to create a comprehensive keyword strategy Storage & Notification: Saves the strategy to NocoDB and sends a notification to Slack Core Components 1. Topic Expansion This component uses OpenAI and a structured output parser to generate: 20 primary keywords 30 long-tail keywords with search intent 15 question-based keywords 10 related topics 2. DataForSEO Integration Two API endpoints are used: Search Volume & CPC**: Gets monthly search volume and cost-per-click data Keyword Difficulty**: Evaluates how difficult it would be to rank for each keyword 3. Competitor Analysis This component: Analyzes competitor URLs to identify which keywords they rank for Identifies content gaps or opportunities Determines the search intent their content targets 4. Final Keyword Strategy The AI-generated strategy includes: Top 10 primary keywords with metrics 15 long-tail opportunities with low competition 5 question-based keywords to address in content Content structure recommendations 3 potential content titles optimized for SEO Setup Requirements To use this workflow, you'll need: n8n Instance: Either cloud or self-hosted NocoDB Account: For data input and storage API Keys: OpenAI API key DataForSEO API credentials Slack API token (for notifications) Database Setup: Create the required tables in NocoDB as described above Possible Improvements The workflow could be enhanced with the following improvements: Enhanced Keyword Strategy Add topic clustering to group related keywords Enhance the final output with more specific content structure suggestions Include word count recommendations for each content section Additional Data Sources Integrate Google Search Console data for existing content optimization Add Google Trends data to identify rising topics Include sentiment analysis for different keyword groups Improved Competitor Analysis Analyze content length and structure from top-ranking pages Identify common backlink sources for competitor content Extract content headings to better understand content organization Automation Enhancements Add scheduling capabilities to run updates on existing content Implement content performance tracking over time Create alert thresholds for changes in keyword difficulty or search volume Example Output Here is an example Output the Workflow generated based on the following inputs. Inputs: Primary Topic: AI Automation Competitor URLs: n8n.io, zapier.com, make.com Target Audience: Small Business Owners Content Type: Landing Page Location: United States Language: English Output: Final Keyword Strategy The workflow provides a powerful automation for content marketers and SEO specialists to develop data-driven keyword strategies with minimal manual effort. > Original Workflow: AI-Powered SEO Keyword Research Automation - The vibe Marketer
by Jimleuk
This n8n template introduces the Dynamic Prompts AI workflow pattern which are incredible for certain types of data extraction tasks where attributes are unknown or need to remain flexible. The general idea behind this pattern is that the prompts for requested attributes to be extracted live outside the template and so can be changed at any time - without needing to edit the template. This seriously cuts down on maintainance requirements and is reusable for any number of tables at little cost. Check out the n8n Studio Episode here: https://www.youtube.com/watch?v=_fNAD1u8BZw Community post here: https://community.n8n.io/t/dynamic-prompts-with-n8n-baserow-and-airtable/72052 Looking for the Airtable Version? https://n8n.io/workflows/2771-ai-data-extraction-with-dynamic-prompts-and-airtable/ How it works Given we have an "input" field for context and a number of fields for the data we want to extract, this template will run in the background to react to any changes to either the "input" or fields and automatically update the rows accordingly. The key is that Baserow fields have a special property called the "field description". In this pattern, we use this property to allow the user to store a simple prompt describing the data that should exist in the column. Our n8n template reads these column descriptions aka "prompts" to use as instructions to perform tasks on the "input". In this template, the "input" is a PDF of a resume/CV and the columns are attributes a HR person would want to extract from it - such as full name, address, last position, years of experience etc. How to use First publish this template and ensure it's accessible via webhook URL. You then have to complete the "create Baserow webhooks" steps to configure your baserow to send change events to the n8n template. Baserow webhooks are created in the Baserow web interface. Check the template for more instructions. Requirements Baserow for Tables/Database OpenAI for LLM and extraction. Feel free to choose another LLM if preferred. Customising this workflow If you're not using files, you can replace the "input" field with anything you like. For example, the "input" could be single line text.
by Guillaume Duvernay
This n8n template provides a powerful AI-powered chatbot that acts as your personal Spotify DJ. Simply tell the chatbot what kind of music you're in the mood for, and it will intelligently create a custom playlist, give it a fitting name, and populate it with relevant tracks directly in your Spotify account. The workflow is built to be flexible, allowing you to easily change the underlying AI model to your preferred provider, making it a versatile starting point for any AI-driven project. Who is this for? Music lovers:** Instantly create playlists for any activity, mood, or genre without interrupting your flow. Developers & AI enthusiasts:** A perfect starting point to understand how to build a functional AI Agent that uses tools to interact with external services. Automation experts:** See a practical example of how to chain AI actions and sub-workflows for more complex, stateful automations. What problem does this solve? Manually creating a good playlist is time-consuming. You have to think of a name, search for individual songs, and add them one by one. This workflow solves that by: Automating playlist creation:** Turns a simple natural language request (e.g., "I need a playlist for my morning run") into a fully-formed Spotify playlist. Reducing manual effort:** Eliminates the tedious task of searching for and adding multiple tracks. Providing player control:** Allows you to manage your Spotify player (play, pause, next) directly from the chat interface. Centralizing music management:** Acts as a single point of control for both creating playlists and managing playback. How it works Trigger & input: The workflow starts when you send a message in the Chat Trigger interface. AI agent & tool-use: An AI Agent, powered by a Large Language Model (LLM), interprets your message. It has access to a set of "tools" that allow it to interact with Spotify. Playlist creation sub-workflow: If you ask for a new playlist, the Agent calls a sub-workflow using the Create new playlist tool. This sub-workflow uses another AI call to brainstorm a creative playlist name and a list of suitable songs based on your request. Spotify actions: The sub-workflow then connects to Spotify to: Create a new, empty playlist with the generated name. Search for each song from the AI's list to get its official Spotify Track ID. Add each track to the new playlist. Player control: If your request is to control the music (e.g., "pause the music"), the Agent uses the appropriate tool (Pause player, Resume player, etc.) to directly control your active Spotify player. Setup Accounts & API keys: You will need active accounts and credentials for: Your AI provider (e.g., OpenAI, Groq, local LLMs via Ollama): To power the AI Agent and the playlist generation. Spotify: To create playlists and control the player. You'll need to register an application in the Spotify Developer Dashboard to get your credentials. Configure credentials: Add your AI provider's API key to the Chat Model nodes. The template uses OpenAI by default, but you can easily swap this out for any compatible Langchain model node. Add your Spotify OAuth2 credentials to all Spotify and Spotify Tool nodes. Activate workflow: Once all credentials are set and the workflow is saved, click the "Active" toggle. You can now start interacting with your Spotify AI Agent via the chat panel! Taking it further This template is a great foundation. Here are a few ideas to expand its capabilities: Become the party DJ:** Make the Chat Trigger's webhook public. You can then generate a QR code that links to the chat URL. Party guests can scan the code and request songs directly from their phones, which the agent can add to a collaborative playlist or the queue. Expand the agent's skills:** The Spotify Tool node has more actions available. Add a new tool for Add to Queue so you can ask the agent to queue up a specific song without creating a whole new playlist. Integrate with other platforms:** Swap the Chat Trigger for a Telegram or Discord trigger to build a Spotify bot for your community. You could also connect it to a Webhook to take requests from a custom web form.
by Davide
The "Voice RAG Chatbot with ElevenLabs and OpenAI" workflow in n8n is designed to create an interactive voice-based chatbot system that leverages both text and voice inputs for providing information. Ideal for shops, commercial activities and restaurants How it works: Here's how it operates: Webhook Activation: The process begins when a user interacts with the voice agent set up on ElevenLabs, triggering a webhook in n8n. This webhook sends a question from the user to the AI Agent node. AI Agent Processing: Upon receiving the query, the AI Agent node processes the input using predefined prompts and tools. It extracts relevant information from the knowledge base stored within the Qdrant vector database. Knowledge Base Retrieval: The Vector Store Tool node interfaces with the Qdrant Vector Store to retrieve pertinent documents or data segments matching the user’s query. Text Generation: Using the retrieved information, the OpenAI Chat Model generates a coherent response tailored to the user’s question. Response Delivery: The generated response is sent back through another webhook to ElevenLabs, where it is converted into speech and delivered audibly to the user. Continuous Interaction: For ongoing conversations, the Window Buffer Memory ensures context retention by maintaining a history of interactions, enhancing the conversational flow. Set up steps: To configure this workflow effectively, follow these detailed setup instructions: ElevenLabs Agent Creation: Begin by creating an agent on ElevenLabs (e.g., named 'test_n8n'). Customize the first message and define the system prompt specific to your use case, such as portraying a character like a waiter at "Pizzeria da Michele". Add a Webhook tool labeled 'test_chatbot_elevenlabs' configured to receive questions via POST requests. Qdrant Collection Initialization: Utilize the HTTP Request nodes ('Create collection' and 'Refresh collection') to initialize and clear existing collections in Qdrant. Ensure you update placeholders QDRANTURL and COLLECTION accordingly. Document Vectorization: Use Google Drive integration to fetch documents from a designated folder. These documents are then downloaded and processed for embedding. Employ the Embeddings OpenAI node to generate embeddings for the downloaded files before storing them into Qdrant via the Qdrant Vector Store node. AI Agent Configuration: Define the system prompt for the AI Agent node which guides its behavior and responses based on the nature of queries expected (e.g., product details, troubleshooting tips). Link necessary models and tools including OpenAI language models and memory buffers to enhance interaction quality. Testing Workflow: Execute test runs of the entire workflow by clicking 'Test workflow' in n8n alongside initiating tests on the ElevenLabs side to confirm all components interact seamlessly. Monitor logs and outputs closely during testing phases to ensure accurate data flow between systems. Integration with Website: Finally, integrate the chatbot widget onto your business website replacing placeholder AGENT_ID with the actual identifier created earlier on ElevenLabs. By adhering to these comprehensive guidelines, users can successfully deploy a sophisticated voice-driven chatbot capable of delivering precise answers utilizing advanced retrieval-augmented generation techniques powered by OpenAI and ElevenLabs technologies.
by Ranjan Dailata
Who this is for? The Brand Content Extract, Summarization & Sentiment Analysis workflow is designed for professionals and teams who need to monitor, understand, and act on public brand perception at scale. It is ideal for: Brand Managers - Looking to track how their brand is portrayed online. Marketing Analysts - Seeking insights from competitor and industry content. PR & Communications Teams - Evaluating media tone and potential reputation risks. Data Scientists & AI Developers - Automating content intelligence pipelines. Growth Hackers - Performing large-scale web listening for campaign optimization. What problem is this workflow solving? Manually tracking and interpreting how your brand is mentioned across blogs, news sites, or product reviews is labor-intensive and unscalable. Traditional scraping tools return raw data but lack insights like summarization, sentiment analysis etc. This workflow addresses: Scalable extraction of brand-related content using Bright Data's infrastructure. Textual data extract for easy decision-making or alerting. Automated summarization of verbose or multi-paragraph articles using Gemini. Sentiment analysis of how a brand is being portrayed. What this workflow does Receives input: A brand URL for the data extraction and analysis. Uses Bright Data's Web Unlocker to extract content from relevant sites. Cleans and preprocesses the scraped content for readability. Sends the content to Google Gemini for: Enriched results including: Cleaned content Summary Sentiment Analysis Sends the response to a target system via Webhook notification Perists the response to disk Setup Sign up at Bright Data. Navigate to Proxies & Scraping and create a new Web Unlocker zone by selecting Web Unlocker API under Scraping Solutions. In n8n, configure the Header Auth account under Credentials (Generic Auth Type: Header Authentication). The Value field should be set with the Bearer XXXXXXXXXXXXXX. The XXXXXXXXXXXXXX should be replaced by the Web Unlocker Token. A Google Gemini API key (or access through Vertex AI or proxy). Update the Set URL and Bright Data Zone for setting the brand content URL and the Bright Data Zone name. Update the Webhook HTTP Request node with the Webhook endpoint of your choice. How to customize this workflow to your needs Update Source** : Update the workflow input to read from Google Sheet or Airbase for dynamically tracking multiple brands or topics. AI Prompt Customization** : Tailor Gemini prompts for: Summary length (brief vs. detailed) Detailed Sentiment with the custom structured data format. Brand-specific tone detection (e.g., trust, excitement, dissatisfaction) Output Destinations**: Configure the output node to send the responses to various platforms, such as Slack, CRM systems, or databases.
by Anurag Srivastava
🧠 AI Prompt Generator Workflow – n8n Documentation Who is this for? This workflow is for AI builders, prompt engineers, developers, marketers, and no-code creators who want to convert rough user input into structured, high-quality prompts for LLMs. It’s especially useful for tools that rely on precision prompting and want to automate the discovery of intent and constraints. What problem is this workflow solving? / Use case Many users struggle to write effective prompts due to vague ideas or unclear formatting needs. This workflow: Collects structured user input. Dynamically generates clarifying questions. Returns a well-formatted AI prompt based on the user's intent and context. This ensures the generated prompt is useful for downstream AI agents without requiring technical understanding from the end user. What this workflow does Start with a branded form UI The user is shown a styled form with questions like: What do you want to build? What tools can you access? What input can be expected? What output do you expect? Analyze and generate relevant follow-up questions The workflow sends the user's answers to Google Gemini (via LangChain) which outputs 1–3 clarifying questions. These questions are parsed into a dynamic form. Loop through and collect follow-up answers Each follow-up question is shown in a form one at a time to capture additional context. Merge all inputs The base intent and follow-up responses are merged into a single context block. Generate a final AI-ready prompt The prompt generator node formats everything into a clean, six-section structure: <constraints> <role> <inputs> <tools> <instructions> <conclusions> Display the final result The finished prompt is shown in a clean UI where users can easily copy and reuse it. Setup Credentials Required Google Gemini (PaLM) API credentials (already integrated as Google Gemini(PaLM) Api account 2). Form Trigger Ensure the On form submission trigger is exposed via a webhook or public endpoint (e.g. using ngrok or deployed server). Styling Custom CSS is included in all form nodes for a beautiful UI. You can modify this to match your branding. Environment This workflow is compatible with self-hosted n8n or n8n.cloud. Webhooks must be accessible to users who will fill out the form. How to customize this workflow to your needs Change the base questions** Update the BaseQuestions form node to add or remove fields depending on your use case. Modify Gemini prompts** You can edit the system prompt inside PromptGenerator to change tone, output structure, or AI instructions. Change prompt formatting** If you use a different AI agent (like GPT, Claude, or Mistral), adjust the section labels and formatting to suit that agent’s expected input. Send results elsewhere** Add integration nodes after PromptGenerator, such as: Google Docs / Notion (to log prompts) Gmail / Slack (to notify your team) Zapier / Make (to push to other automation flows) Skip follow-up questions (optional)** If your base form collects all needed info, you can bypass the RelevantQuestions form section by modifying conditional logic. Example Output Prompt (Structure) <role> You are an AI assistant that converts videos into LinkedIn posts with a witty tone. </role> <inputs> - A short video (max 5 minutes) - Desired tone: witty - Style: both summary and quotes - Audience: general network </inputs> <tools> You do not have access to APIs or web search. </tools> <instructions> 1. Parse transcript. 2. Extract insights and quotes. 3. Write an engaging, witty LinkedIn post under 3000 characters. </instructions> <constraints> Avoid technical jargon. No generic intros. Make it platform-native. </constraints> <conclusions> Return a LinkedIn-ready post that starts with a hook and ends with hashtags.
by Stefan
Track n8n Node Definitions from GitHub and Export to Google Sheets Overview This workflow automatically retrieves and processes metadata from the official n8n GitHub repository, filters all available .node.json files, parses their structure, and appends structured information into a Google Sheet. Perfect for developers, community managers, and technical writers who need to maintain up-to-date information about n8n's evolving node ecosystem. Setup Instructions Prerequisites Before setting up this workflow, ensure you have: A GitHub account with API access A Google account with Google Sheets access An active n8n instance (cloud or self-hosted) Step 1: GitHub API Configuration Navigate to GitHub Settings → Developer Settings → Personal Access Tokens Generate a new token with public_repo permissions Copy the generated token and store it securely In n8n, create a new "GitHub API" credential Paste your token in the credential configuration and save Step 2: Google Sheets Setup Create a new Google Sheets document Set up the following column headers in the first row: node (Column A) - Node identifier/name nodeVersion (Column B) - Version of the node codexVersion (Column C) - Codex version number categories (Column D) - Node categories credentialDocumentation (Column E) - Credential documentation URL primaryDocumentation (Column F) - Primary documentation URL Note down the Google Sheets document ID from the URL Configure Google Sheets OAuth2 credentials in n8n Step 3: Workflow Configuration Import the workflow into your n8n instance Update the following placeholder values: Replace YOUR_GOOGLE_SHEETS_DOCUMENT_ID with your actual document ID Replace YOUR_WEBHOOK_ID if using webhook functionality Configure the GitHub API credentials in the HTTP Request nodes Set up Google Sheets credentials in the Google Sheets nodes Share your Google Sheets document with the email address associated with your Google OAuth2 credentials Grant "Editor" permissions to allow the workflow to write data Google Sheets Template Details The workflow creates a structured dataset with these columns: node**: Node identifier (e.g., n8n-nodes-base.slack) nodeVersion**: Version of the node (e.g., 1.0.0) codexVersion**: Codex version number (e.g., 1.0.0) categories**: Node categories (e.g., Communication, Productivity) credentialDocumentation**: URL to credential documentation primaryDocumentation**: URL to primary node documentation Customization Options Modifying Data Extraction You can customize the "Format Data" node to extract additional fields: Add new assignments in the Set node Modify the column mapping in the Google Sheets node Update your spreadsheet headers accordingly Changing Update Frequency To run this workflow on a schedule: Replace the Manual Trigger with a Cron node Set your desired schedule (e.g., daily, weekly) Configure appropriate timing to avoid API rate limits Adding Filters Customize the "Filter Node Files" code node to: Filter specific node types Include/exclude certain categories Process only recently updated nodes Features Fetches all node definitions from the n8n-io/n8n repository Filters for .node.json files only Downloads and parses metadata automatically Extracts key fields like node names, versions, categories, and documentation URLs Appends structured data to Google Sheets with batch processing Includes error handling and retry mechanisms Clears existing data before appending new information for fresh results Use Cases This workflow is ideal for: Track changes in official n8n node definitions over time Audit node categories and documentation links for completeness Build custom dashboards from node metadata Community management and documentation maintenance Integration planning and compatibility analysis
by inderjeet Bhambra
This workflow contains community nodes that are only compatible with the self-hosted version of n8n. How it works? This workflow is an intelligent SEO analysis pipeline that ethically scrapes blog content and performs comprehensive SEO evaluation using AI. It receives blog URLs via webhook, validates permissions through robots.txt compliance, extracts content, and generates detailed SEO insights across four strategic dimensions: Content Optimization, Keyword Strategy, Technical SEO, and Backlink Building potential. The system prioritizes ethical web scraping by checking robots.txt permissions before proceeding, ensuring compliance with website policies. Upon successful analysis, it returns a structured JSON report with actionable SEO recommendations, performance scores, and optimization strategies. Technical Specifications Trigger: HTTP POST webhook Processing Time: 30-60 seconds depending on content size AI Model: GPT-4.1 minimum with specialized SEO analysis prompt. Output Format: Structured JSON Error Handling: Graceful failure with informative messages Compliance: Respects website robots.txt policies