by Paul Taylor
📩 Gmail → GPT → Supabase | Task Extractor This n8n workflow automates the extraction of actionable tasks from unread Gmail messages using OpenAI's GPT API, stores the resulting task metadata in Supabase, and avoids re-processing previously handled emails. ✅ What It Does Triggers on a schedule to check for unread emails in your Gmail inbox. Loops through each email individually using SplitInBatches. Checks Supabase to see if the email has already been processed. If it's a new email: Formats the email content into a structured GPT prompt Calls ChatGPT-4o to extract structured task data Inserts the result into your emails table in Supabase 🧰 Prerequisites Before using this workflow, you must have: An active n8n Cloud or self-hosted instance A connected Gmail account with OAuth credentials in n8n A Supabase project with an emails table and: ALTER TABLE emails ADD CONSTRAINT unique_email_id UNIQUE (email_id); An OpenAI API key with access to GPT-4o or GPT-3.5-turbo 🔐 Required Credentials | Name | Type | Description | |-----------------|------------|-----------------------------------| | Gmail OAuth | Gmail | To pull unread messages | | OpenAI API Key | OpenAI | To generate task summaries | | Supabase API | HTTP | For inserting rows via REST API | 🔁 Environment Variables or Replacements Supabase_TaskManagement_URI → e.g., https://your-project.supabase.co Supabase_TaskManagement_ANON_KEY → Your Supabase anon key These are used in the HTTP request to Supabase. ⏰ Scheduling / Trigger Triggered using a Schedule node Default: every X minutes (adjust to your preference) Uses a Gmail API filter: unread emails with label = INBOX 🧠 Intended Use Case > Designed for productivity-minded professionals who want to extract, summarize, and store actionable tasks from incoming email — without processing the same email twice or wasting GPT API credits. This is part of a larger system integrating GPT, calendar scheduling, and optional task platforms (like ClickUp). 📦 Output (Stored in Supabase) Each processed email includes: email_id subject sender received_at body (email snippet) gpt_summary (structured task) requires_deep_work (from GPT logic) deleted (initially false)
by Fenngbrotalk
n8n Workflow: AI-Powered Stock Chart Analysis Bot for Telegram This is a powerful n8n automation workflow that integrates a Telegram bot with OpenAI's multimodal large language model (GPT-4 Vision) to provide users with real-time stock chart analysis. Workflow Breakdown Receive Image:** The workflow is initiated by a Telegram Trigger. It activates whenever a user sends an image (e.g., a stock's candlestick chart) to a designated Telegram chat, automatically downloading the file. Image Pre-processing:** To optimize the AI's performance and efficiency, the Edit Image node resizes the incoming image to a standard 512x512 pixel format. AI Vision Analysis:** The processed image is then passed to a LangChain Chain, which utilizes the OpenAI GPT-4 Vision model. A sophisticated system prompt instructs the AI to act as a professional stock analyst. Intelligent Interpretation:** The AI analyzes the image to identify the stock's name, price trend (uptrend, downtrend, or sideways), key support/resistance levels, and volume changes. It then generates a comprehensive analysis report combining technical indicators and market sentiment. Structured Output:** To ensure reliability and consistency, the AI's output is parsed into a specific JSON format. This structure includes a search_word (for the industry/sector) and the main content (the analysis text). Send Response:** Finally, the workflow extracts the content field from the JSON output and uses the Telegram node to send this professional analysis back to the user as a text message in the same chat. Key Features User-Friendly:** Users simply send an image to get an analysis, requiring no complex commands. Instant & Efficient:** The entire analysis and response process is fully automated and completed within moments. Professional-Grade Analysis:** Leverages the advanced image recognition and reasoning capabilities of GPT-4 Vision to deliver insights comparable to those of a human analyst. Reliable & Consistent:** The use of structured output ensures that the format of the response is always consistent and easy to read or process further.
by isa024787bel
This n8n workflow automates sending out SMS notifications via Vonage which includes new tech-related vocabulary everyday. To build this handy vocabulary improver, you’ll need the following: n8n – You can find details on how to install n8n on the Quickstart page. LingvaNex account – You can create a free account here. Up to 200,000 characters are included in the free plan when you generate your API key. Airtable account – You can register for free. Vonage account – You can sign up free of charge if you aren’t already.
by Lorena
This workflow allows you to collect tweets, store them in MongoDB, analyse their sentiment, insert them into a Postgres database, and post positive tweets in a Slack channel. Cron node: Schedule the workflow to run every day Twitter node: Collect tweets MongoDB node: Insert the collected tweets in MongoDB Google Cloud Natural Language node: Analyse the sentiment of the collected tweets Set node: Extract the sentiment score and magnitude Postgres node: Insert the tweets and their sentiment score and magnitude in a Posgres database IF node: Filter tweets with positive and negative sentiment scores Slack node: Post tweets with a positive sentiment score in a Slack channel NoOp node: Ignore tweets with a negative sentiment score
by scrapeless official
> ⚠️ Disclaimer: This workflow uses Scrapeless and Claude AI via community nodes, which require n8n self-hosted to work properly. 🔁 How It Works This intelligent B2B lead generation workflow combines search automation, website crawling, AI analysis, and multi-channel output: It starts by using Scrapeless’s Deep Serp API to find company websites from targeted Google Search queries. Each result is then individually crawled using Scrapeless's Crawler module, retrieving key business information from pages like /about, /contact, /services. The raw web content is processed via a Code node to clean, extract, and prepare structured data. The cleaned data is passed to Claude Sonnet (Anthropic) which analyzes and qualifies the lead based on content richness, contact data, and relevance. A filter step ensures only high-quality leads (e.g. lead score ≥ 6) are kept. Sent via Discord webhook for real-time notification (can be replaced with Slack, email, or CRM tools). > 📌 The result is a fully automated system that finds, qualifies, and organizes B2B leads with high efficiency and minimal manual input. ✅ Pre-Conditions Before using this workflow, make sure you have: An n8n self-hosted instance A Scrapeless account and API key (get it here) An Anthropic Claude API key A configured Discord webhook URL (or alternative notification service) ⚙️ Workflow Overview Manual Trigger → Scrapeless Google Search → Item Lists → Scrapeless Crawler → Code (Data Cleaning) → Claude Sonnet → Code (Response Parser) → Filter → Discord Notification 🔨 Step-by-Step Breakdown Manual Trigger – For testing purposes (can be replaced with Cron or Webhook) Scrapeless Google Search – Queries target B2B topics via Scrapeless’s Deep SERP API Item Lists – Splits search results into individual items Scrapeless Crawler – Visits each company domain and scrapes structured content Code Node (Data Cleaner) – Extracts and formats content for LLM input Claude Sonnet (via HTTP Request) – Evaluates lead quality, relevance, and contact info Code Node (Parser) – Parses Claude’s JSON response IF Filter – Filters leads based on score threshold Discord Webhook – Sends formatted message with company info 🧩 Customization Guidance You can easily adjust the workflow to match your needs: Lead Criteria**: Modify the Claude prompt and scoring logic in the Code node Output Channels**: Replace the Discord webhook with Slack, Email, Airtable, or any CRM node Search Topics**: Change your query in the Scrapeless SERP node to find leads in different niches or countries Scoring Threshold**: Adjust the filter logic (lead_score >= 6) to match your quality tolerance 🧪 How to Use Insert your Scrapeless and Claude API credentials in the designated nodes Replace or configure the Discord webhook (or alternative outputs) Run the workflow manually (or schedule it) View qualified leads directly in your chosen notification channel 📦 Output Example Each qualified lead includes: 🏢 Company Name 🌐 Website ✉️ Email(s) 📞 Phone(s) 📍 Location 📈 Lead Score 📝 Summary of relevant content 👥 Ideal Users This workflow is perfect for: AI SaaS companies** targeting mid-market & enterprise leads Marketing agencies** looking for B2B-qualified leads Automation consultants** building scraping solutions No-code developers** working with n8n, Make, Pipedream Sales teams** needing enriched prospecting data
by Lorena
This workflow is triggered when a new order is created in Shopify. Then: the order information is stored in Zoho CRM, an invoice is created in Harvest and stored in Trello, if the order value is above 50, an email with a discount coupon is sent to the customer and they are added to a MailChimp campaign for high-value customers; otherwise, only a "thank you" email is sent to the customer. Note that you need to replace the List ID in the Trello node with your own ID (see instructions in our docs). Same goes for the Account ID in the Harvest node (see instructions here).
by Tushar Mishra
This n8n workflow automatically fetches the latest CVE data at scheduled intervals, extracts relevant security details, and creates a corresponding Security Incident in ServiceNow for each new vulnerability. Schedule Trigger – Runs at predefined intervals. Jina Fetch – Retrieves the latest CVE feed. Information Extractor (OpenAI Chat Model) – Processes and extracts key details from the CVE data. Split Out – Separates each CVE entry for individual processing. Create Incident – Generates a ServiceNow Security Incident with the extracted CVE details. Ideal for security teams to ensure timely tracking and remediation of new vulnerabilities without manual monitoring.
by AlQaisi
Streamline data from an n8n form into Google Sheet Airtable and and Email Sending Video for workflow process This workflow facilitates efficient data collection and management by leveraging the capabilities of various nodes within the n8n platform. It commences with the n8n Form Trigger node, where users provide their name, location, and email address. Subsequently, the data seamlessly flows through nodes like Google Sheets, Code, Set, Airtable, Gmail, and Gmail1 for processing and storage. n8n Form Trigger:** Gathers user input data, including Name, City, and Email. Google Sheets:** Manages data operations related to Google Sheets. Code:** Executes JavaScript code to manipulate data fields. Set:** Formats and sets data values for further processing. Airtable:** Facilitates data operations specific to Airtable. Gmail:** Sends custom emails to the provided Email address. Gmail:** Sends additional emails using different templates. Each node within the workflow performs specialized tasks such as extracting date and time fields, formatting data, appending it to Google Sheets and Airtable, and sending personalized emails to the submitter. This streamlined process ensures effective handling of collected information and enhances overall data management efficiency. Workflow Description: n8n Form Trigger: A trigger node that initiates the workflow upon form submission. Captures essential user details like Name, City, and Email. Extracting Date and Time Fields from 'submittedAt' Field: Utilizes a code node to extract Date and Time information from the submitted data. Format the Fields: Standardizes the format of extracted fields (Name, City, Date, Time, Email) for consistency. Airtable: Creates a new record in Airtable with the formatted data. Includes columns for Name, City, Email, Time, and Date. Google Sheets: Appends the formatted data to a designated Google Sheet. Includes columns for Name, City, Email, Date, and Time. Gmail: Sends an email to the provided Email address with a customized message. Subject: "Testing Text Message Delivery" Message: Personalized content with a Name placeholder. Gmail1: Sends another email using a different template. Subject incorporates the Date field for variation. Message content tailored to the subject line. Workflow Connections: n8n Form Trigger -> Extracting Date and Time Fields -> Format the Fields -> Google Sheets & Airtable -> Gmail Google Sheets -> Gmail1 This comprehensive workflow efficiently collects user data, processes it to extract Date and Time fields, stores the formatted information in Google Sheets and Airtable, and delivers tailored emails to the recipients. Copy these templates to get started : Google Sheet Airtable Links to Node Documentation: n8n Form Trigger Documentation Code Node Documentation Set Node Documentation Airtable Node Documentation Google Sheets Node Documentation Gmail Node Documentation
by AlQaisi
Transforming Emails into Podcasts 🎙️ Check out this channel for example. The n8n workflow described here aims to revolutionize the way users engage with promotional emails by converting them into entertaining audio podcasts. This innovative project leverages automation through n8n to streamline tasks and enhance user experience. Project Benefit 🎧🌟 The primary goal of this project is to transform "CATEGORY_PROMOTIONS" emails into engaging audio content. By converting text into speech, users can enjoy promotional material hands-free, making it easier to consume information while on the go or relaxing. The workflow consists of several key steps orchestrated seamlessly to deliver a delightful experience to users. How to Use the Workflow: Gmail trigger Node: Initiates the workflow by fetching "CATEGORY_PROMOTIONS" emails at regular intervals. The Gmail Trigger node in your N8N workflow is set to poll for new emails every minute and is configured to filter emails with the label "CATEGORY_PROMOTIONS" before triggering the workflow. Steps to Use Filters Inside the Gmail Trigger Node: Configure Gmail Trigger Node: Set "Poll Times" to "Every Minute" to check for new emails at regular intervals. Enable the "Simple" toggle if you want to simplify the node interface. Under "Filters", specify the label IDs you want to filter by. In this case, it's set to "CATEGORY_PROMOTIONS". Adjust any additional options as needed. // Configure Gmail Trigger node pollTimes: { item: [ { mode: "everyMinute" } ] }, simple: false, filters: { labelIds: [ "CATEGORY_PROMOTIONS" ] }, options: {} Save and Execute: Save your workflow and execute it to start monitoring your Gmail account for new emails with the specified label filter. By following these steps, your workflow will effectively trigger based on new emails that match the "CATEGORY_PROMOTIONS" label in your Gmail account. Get message content Node: Extracts the email content for processing. Summarization Chain Node: Generates concise summaries using advanced methods for better readability. Delete the unnecessary items Node: Removes irrelevant details from the email content. Text to Free TTS Node: Converts the summary text into speech using Free TTS technology. Convert from base64 to File Node: Transforms the audio data into a compatible file format. Merge Text with Audio Node: Combines the text and audio components seamlessly. Aggregate in same cell Node: Gathers all processed data for finalization. Send Message to Telegram Node: Dispatches the audio message along with a caption to a designated Telegram chat ID. By automating these tasks, the workflow ensures efficient communication and delivers content in a more engaging format, fostering a positive user experience. Configuration Instructions: The configuration of this workflow involves setting up the necessary nodes and establishing connections between them. Each node performs a specific function crucial to the overall operation of the workflow. Additionally, credentials need to be provided for accessing Gmail and OpenAI services to enable seamless data processing and summarization. Utilizing Text-to-Speech API 🎧 In addition to n8n automation, an external Text-to-Speech API plays a pivotal role in generating audio content from text data. By sending a POST request with JSON data containing the text and voice preferences, users can quickly receive audio files of the converted content. The API offers a straightforward interface for text-to-speech conversion, making it ideal for creating audio clips efficiently. To access this API, simply submit the desired text and voice selection to receive the generated speech audio file. The API endpoint can be accessed at https://tiktok-tts.weilnet.workers.dev/api/generation or through https://tiktokvoicegenerator.com/. In conclusion, this n8n workflow coupled with a Text-to-Speech API presents a powerful solution for transforming emails into captivating podcasts, enhancing user engagement and communication effectiveness. By embracing automation and innovative technologies, this project aims to improve user experience and streamline content delivery processes. 🌈✨🚀
by Dataki
This workflow enriches new Pipedrive organization's data by adding a note to the organization object in Pipedrive. It assumes there is a custom "website" field in your Pipedrive setup, as data will be scraped from this website to generate a note using OpenAI. Then, a notification is sent in Slack. ⚠️ Disclaimer This workflow uses a scraping API. Before using it, ensure you comply with the regulations regarding web scraping in your country or state. Important Notes The OpenAI model used is GPT-4o, chosen for its large input token capacity. However, it is not the cheapest model if cost is very important to you. The system prompt in the OpenAI Node generates output with relevant information, but feel free to improve or modify it according to your needs. How It Works Node 1: Pipedrive Trigger - An Organization is Created This is the trigger of the workflow. When an organization object is created in Pipedrive, this node is triggered and retrieves the data. Make sure you have a "website" custom field in Pipedrive (the name of the field in the n8n node will appear as a random ID and not with the Pipedrive custom field name). Node 2: ScrapingBee - Get Organization's Website's Homepage Content This node scrapes the content from the URL of the website associated with the Pipedrive Organization created in Node 1. The workflow uses the ScrapingBee API, but you can use any preferred API or simply the HTTP request node in n8n. Node 3: OpenAI - Message GPT-4o with Scraped Data This node sends HTML-scraped data from the previous node to the OpenAI GPT-4o model. The system prompt instructs the model to extract company data, such as products or services offered and competitors (if known by the model), and format it as HTML for optimal use in a Pipedrive Note. Node 4: Pipedrive - Create a Note with OpenAI Output This node adds a Note to the Organization created in Pipedrive using the OpenAI node output. The Note will include the company description, target market, selling products, and competitors (if GPT-4o was able to determine them). Node 5 & 6: HTML To Markdown & Code - Markdown to Slack Markdown These two nodes format the HTML output to Slack Markdown. The Note created in Pipedrive is in HTML format, as specified by the System Prompt of the OpenAI Node. To send it to Slack, it needs to be converted to Markdown and then to Slack Markdown. Node 7: Slack - Notify This node sends a message in Slack containing the Pipedrive Organization Note created with this workflow.
by Omer Fayyaz
An intelligent AI-powered agent that automatically browses publication websites, analyzes page content with natural language understanding, and identifies the latest downloadable reports, research papers, and data files across multiple sources using advanced structured output parsing. What Makes This Different: AI-Powered Content Analysis** - Uses advanced language models (GPT-4/GPT-5.1) to understand page context and identify downloadable reports, even when links aren't explicitly labeled, handling complex page layouts and dynamic content Structured Output Parsing** - Enforces JSON schema validation ensuring consistent data extraction with required fields (title, link, file_type, description), eliminating parsing errors and data inconsistencies HTML to Markdown Conversion** - Converts raw HTML to clean Markdown before AI processing, removing noise and improving AI comprehension of page structure and content hierarchy Intelligent Link Detection** - AI agent identifies direct download URLs, converts relative links to absolute URLs, and prioritizes the most recent reports based on publication dates and page positioning Comprehensive Validation** - Multi-layer validation checks link format, file type detection, and report relevance before saving, ensuring only valid, downloadable reports enter your library Flexible Source Management** - Reads publication sources from Google Sheets, enabling easy addition/removal of sources without workflow modification, with support for categories and custom metadata Key Benefits of AI-Powered Report Discovery: Automated Discovery** - Eliminates manual browsing and searching across multiple publication sites, saving hours of research time while ensuring you never miss new reports Context-Aware Extraction** - AI understands page context, distinguishing between actual reports and navigation links, category pages, or promotional content Prioritized Results** - Automatically selects the most recent and relevant report from each source, focusing on quality over quantity Structured Data Output** - All discovered reports are saved with consistent metadata (title, link, file type, description, source), making them easy to search, filter, and integrate with other systems Error Resilience** - Handles missing reports gracefully, logging when no reports are found without failing the entire workflow, ensuring continuous operation Integration Ready** - Can be called by other workflows (e.g., PDF downloader), enabling end-to-end automation from discovery to storage Who's it for This template is designed for researchers, market analysts, competitive intelligence teams, academic institutions, industry monitoring services, and anyone who needs to systematically discover and track downloadable reports from multiple publication sources. It's perfect for organizations that need to monitor industry publications, track competitor research, discover new market reports, build research libraries, or stay updated on latest publications without manually visiting dozens of websites daily. How it works / What it does This workflow creates an AI-powered report discovery system that reads publication source URLs from Google Sheets, fetches their pages, uses AI to analyze content, and extracts information about downloadable reports. The system: Reads Active Sources - Fetches publication URLs and metadata from Google Sheets "Report Sources" sheet, processing each source in sequence Loops Through Sources - Processes sources one at a time using Split in Batches, ensuring proper error isolation and preventing batch failures Fetches Publication Pages - Downloads HTML content from each source URL with proper browser headers (User-Agent, Accept, Accept-Language) to avoid blocking Converts HTML to Markdown - Transforms raw HTML into clean Markdown format, removing styling, scripts, and navigation elements to improve AI comprehension AI Analysis - LangChain agent analyzes the Markdown content using GPT-4/GPT-5.1, identifying downloadable reports based on context, link patterns, and content structure Structured Output Parsing - Enforces JSON schema validation, ensuring the AI returns data in the exact format: source, title, link, file_type, description Validates & Normalizes Output - Validates extracted links are absolute URLs, checks file type indicators, determines report validity, and normalizes all fields Routes by Validity - IF node routes valid reports to save operation, invalid/missing reports to logging Saves Discovered Reports - Appends valid reports to Google Sheets "Discovered Reports" sheet with metadata, source URL, category, and discovery timestamp Logs No Report Found - Records sources where no valid reports were found in "Discovery Log" sheet for monitoring and troubleshooting Tracks Completion - Generates completion summary with number of sources checked and processing timestamp Key Innovation: AI-Powered Context Understanding - Unlike traditional web scrapers that rely on fixed CSS selectors or regex patterns, this workflow uses AI to understand page context and semantics. The AI can identify reports even when they're embedded in complex layouts, use non-standard naming, or require understanding of surrounding text to determine relevance. This makes it adaptable to any website structure without manual configuration. How to set up 1. Prepare Google Sheets Create a Google Sheet with three tabs: "Report Sources", "Discovered Reports", and "Discovery Log" In "Report Sources" sheet, create columns: Source_Name, Source_URL, Category (optional) Add publication URLs in the Source_URL column (e.g., "https://example.com/research" or "https://publisher.com/reports") Add descriptive names in Source_Name column for easy identification Optionally add Category values (e.g., "Market Research", "Industry Reports", "Academic Papers") The "Discovered Reports" sheet will be automatically populated with columns: source, title, link, fileType, description, sourceUrl, category, discoveredAt, status, isValid The "Discovery Log" sheet will record sources where no reports were found Verify your Google Sheets credentials are set up in n8n (OAuth2 recommended) 2. Configure Google Sheets Nodes Open the "Read Active Sources" node and select your spreadsheet from the document dropdown Set sheet name to "Report Sources" Configure the "Save Discovered Report" node: select same spreadsheet, set sheet name to "Discovered Reports", operation should be "Append or Update" Configure the "Log No Report Found" node: same spreadsheet, "Discovery Log" sheet, operation "Append or Update" Test connection by running the "Read Active Sources" node manually to verify it can access your sheet 3. Set Up OpenAI Credentials Open the "OpenAI GPT-5.1" node (or configure the model you want to use) Connect your OpenAI API credentials (API key required) The workflow uses GPT-5.1 by default, but you can change to GPT-4, GPT-4 Turbo, or other models Temperature is set to 0.1 for consistent, deterministic output Verify API key has sufficient credits and access to the selected model For cost optimization, GPT-4 Turbo is recommended for similar results at lower cost 4. Configure AI Agent & Output Parser The "AI Report Discovery Agent" node contains a detailed system prompt that instructs the AI on what to look for The prompt is pre-configured but can be customized for your specific needs (e.g., prioritize certain file types, look for specific keywords) The "Structured Output Parser" enforces the JSON schema - verify the schema matches your needs: { "source": "Publisher Name", "title": "Report Title", "link": "https://example.com/report.pdf", "file_type": "pdf", "description": "Brief description" } The parser ensures the AI always returns valid JSON with all required fields Test the AI agent by manually running with a sample source URL to verify it correctly identifies reports 5. Customize Discovery Rules (Optional) The AI agent's system prompt can be modified in the "AI Report Discovery Agent" node Current rules prioritize: downloadable files (PDF, Excel, Word, PowerPoint), most recent publications, direct download URLs To customize: Edit the system message to add specific keywords, file types, or discovery patterns Example customization: Add industry-specific terms or prioritize reports with certain keywords in titles The validation code in "Validate & Normalize Output" can be adjusted to change what's considered "valid" Test with your specific sources to ensure discovery rules work as expected 6. Set Up Scheduling & Test The workflow includes Manual Trigger (for testing), Schedule Trigger (runs daily), and Execute Workflow Trigger (for calling from other workflows) To customize schedule: Open "Schedule (Daily)" node and adjust interval (e.g., twice daily, weekly) For initial testing: Use Manual Trigger, add 2-3 test publication URLs to your "Report Sources" sheet Verify execution: Check that pages are fetched, AI analysis completes, and reports are saved to "Discovered Reports" Monitor execution logs: Check for API errors, timeout issues, or parsing failures Review Discovery Log: Verify sources with no reports are properly logged Common issues: OpenAI API rate limits (add delays if processing many sources), invalid URLs (check source URLs), timeout errors (increase timeout for slow-loading pages), AI not finding reports (may need to adjust system prompt for specific site structures) Requirements OpenAI API Key** - Active OpenAI account with API access and sufficient credits for GPT-4/GPT-5.1 model usage (API key configured in n8n credentials) Google Sheets Account** - Active Google account with OAuth2 credentials configured in n8n for reading and writing spreadsheet data Source Spreadsheet** - Google Sheet with "Report Sources", "Discovered Reports", and "Discovery Log" tabs, properly formatted with required columns Valid Publication URLs** - Direct links to publication pages that contain downloadable reports (not direct PDF links - the workflow discovers those) n8n Instance** - Self-hosted or cloud n8n instance with access to external websites (HTTP Request node needs internet connectivity) and LangChain nodes enabled
by Joseph LePage
The 🌐🤖 AI Agent Chatbot with Jina.ai Webpage Scraper workflow is a powerful automation designed to integrate real-time web scraping capabilities into an AI-driven chatbot. Here's how it works and why it's important: How It Works 💬 Chat Trigger: The workflow begins when a user sends a chat message, triggering the "When chat message received" node. 🧠 AI Agent Processing: The input is passed to the "Jina.ai Web Scraping Agent," which uses advanced AI logic to interpret the user’s query and determine the information needed. 🌐 Web Scraping: The agent utilizes the "HTTP Request" node to scrape real-time data from a user-provided URL, enabling the chatbot to fetch and analyze live website content. 🗂️ Memory Management: The "Window Buffer Memory" node ensures context retention by storing and managing conversational history, allowing for seamless interactions. 🤖 Language Model Integration: The scraped data is processed using the "gpt-4o-mini" language model, which generates clear, accurate, and contextually relevant responses for the user. Why It's Cool ⏱️ Real-Time Information Retrieval**: This workflow empowers users to access up-to-date web content directly through a chatbot, eliminating manual web searches. ✨ Enhanced User Experience**: By combining web scraping with conversational AI, it delivers precise answers tailored to user queries in real time. 🔄 Versatility**: It can be applied across various domains, such as customer support, research, or data analysis, making it a valuable tool for businesses and individuals alike. ⚙️ Automation Efficiency**: Automating web scraping and response generation saves time and effort while ensuring accuracy.