by Yulia
Create a Telegram bot that combines advanced AI functionalities with LangChain nodes and new tools. Nodes as tools and the HTTP request tool are a new n8n feature that extend custom workflow tool and simplify your setup. We used the workflow tool in the previous Telegram template to call the Dalle-3 model. In the new version, we've achieved similar results using the HTTP Request tool and the Telegram node tool instead. The main difference is that Telegram bot becomes more flexible. The LangChain Agent node can decide which tool to use and when. In the previous version, all steps inside the custom workflow tool were executed sequentially. ⚠️ Note that you'd need to select the Tools Agent to work with new tools. Before launching the template, make sure to set up your OpenAI and Telegram credentials. Here’s how the new Telegram bot works: Telegram Trigger listens for new messages in a specified Telegram chat. This node activates the rest of the workflow after receiving a message. AI Tool Agent receives input text, processes it using the OpenAI model and replies to a user. It addresses users by name and sends image links when an image is requested. The OpenAI GPT-4o model generates context-aware responses. You can configure the model parameters or swap this node entirely. Window buffer memory helps maintain context across conversations. It stores the last 10 interactions and ensures that the agent can access previous messages within a session. Conversations from different users are stored in different buffers. The HTTP request tool connects with OpenAI's DALL-E-3 API to generate images based on user prompts. The tool is called when the user asks for an image. Telegram node tool sends generated images back to the user in a Telegram chat. It retrieves the image from the URL returned by the DALL-E-3 model. This does not happen directly, however. The response from the HTTP request tool is first stored in the Agent’s scratchpad (think of it as a short-term memory). In the next iteration, the Agent sends the updated response to the GPT model once again. The GPT model will then create a new tool request to send the image back to the user. To pass the image URL, the tool uses the new $fromAI() expression. Send final reply node sends the final response message created by the agent back to the user on Telegram. Even though the image was already passed to the user, the Agent always stops with the final response that comes from dedicated output. ⚠️ Note, that the Agent may not adhere to the same sequence of actions in 100% of situations. For example, sometimes it could skip sending the file via the Telegram node tool and instead just send an URL in the final reply. If you have a longer series of predefined steps, it may be better to use the “old” custom workflow tool. This template is perfect as a starting point for building AI agentic workflow. Take a look at another agentic Telegram AI template that can handle both text and voice messages.
by Yaron Been
Izzaanel Betia AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the izzaanel/betia model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: izzaanel/betia API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Justingirard Draft Ui Designer Image Generator Description An experiment: a fine-tuned FLUX model for UI design generation Overview This n8n workflow integrates with the Replicate API to use the justingirard/draft-ui-designer model. This powerful AI model can generate high-quality image content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate image content Access the generated output from the final node API Reference Model: justingirard/draft-ui-designer API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of image generation parameters
by Yaron Been
Settyan Flash V2.0.1 Beta.10 AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the settyan/flash-v2.0.1-beta.10 model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: settyan/flash-v2.0.1-beta.10 API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Settyan Flash V2.0.0 Beta.10 AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the settyan/flash-v2.0.0-beta.10 model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: settyan/flash-v2.0.0-beta.10 API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Barbacoaexpert1 Ai Haircuts AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the barbacoaexpert1/ai-haircuts model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: barbacoaexpert1/ai-haircuts API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by Yaron Been
Monexia Nietgoed AI Generator Description None Overview This n8n workflow integrates with the Replicate API to use the monexia/nietgoed model. This powerful AI model can generate high-quality other content based on your inputs. Features Easy integration with Replicate API Automated status checking and result retrieval Support for all model parameters Error handling and retry logic Clean output formatting Parameters Required Parameters prompt** (string): Prompt for generated image. If you include the trigger_word used in the training process you are more likely to activate the trained object, style, or concept in the resulting image. Optional Parameters mask** (string, default: None): Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. seed** (integer, default: None): Random seed. Set for reproducible generation image** (string, default: None): Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored. model** (string, default: dev): Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps. width** (integer, default: None): Width of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation height** (integer, default: None): Height of generated image. Only works if aspect_ratio is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation go_fast** (boolean, default: False): Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16 extra_lora** (string, default: None): Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars' lora_scale** (number, default: 1): Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora. megapixels** (string, default: 1): Approximate number of megapixels for generated image How to Use Set up your Replicate API key in the workflow Configure the required parameters for your use case Run the workflow to generate other content Access the generated output from the final node API Reference Model: monexia/nietgoed API Endpoint: https://api.replicate.com/v1/predictions Requirements Replicate API key n8n instance Basic understanding of other generation parameters
by MC Naveen
I wanted a system to monitor website content changes and notify me. So I made it using n8n. Especially my competitor blogs. I wanted to know how often they are posting new articles. (I used their sitemap.xml file) (The below workflow may vary) In the Below example, I used HackerNews for example. Explanation: First HTTP Request node crawls the webpage and grabs the website source code Then wait for x minutes Again, HTTP Node crawls the webpage If Node compares both results are equal if anything is changed. It’ll go to the false branch and notify me in telegram. Workflow: Sample Response:
by darrell_tw
Workflow Description This workflow demonstrates how to use the LINE Messaging API to handle two scenarios: Replying to a user's message using a reply token. Sending a push message to a specific LINE user using their user ID. Key Features Webhook Integration: Receives and processes incoming messages from LINE using a webhook. Conditional Logic: Checks if the received event type is a message and handles it accordingly. Reply Message: Automatically responds to the user's message using the LINE reply token. Push Message: Sends a test message to a specific LINE user using their unique user ID. Pre-Configuration To simplify the setup process, create a Header Auth credential in n8n: Name**: Authorization Value**: Bearer {line token} This will authenticate all API requests to the LINE Messaging API. Node Configurations 1.1. Webhook from LINE Message Purpose**: Captures incoming events from the LINE Messaging API. Configuration**: HTTP Method: POST Path: {n8n-webhook-page} 1.2. If Condition Purpose**: Checks if the received event type is message. Configuration**: Condition: {{ $json.body.events[0].type }} equals "message" 1.3. Line: Reply with Token Purpose**: Replies to the user's message using the LINE reply token. Configuration**: Method: POST URL: https://api.line.me/v2/bot/message/reply JSON Body: { "replyToken": "{{ $('Webhook from Line Message').item.json.body.events[0].replyToken }}", "messages": [ { "type": "text", "text": "收到您的訊息 : {{ $('Webhook from Line Message').item.json.body.events[0].message.text }}" } ] } 2.1. Manual Trigger: Test Workflow Purpose**: Triggers the workflow for testing the push message functionality. Configuration**: No additional setup required. 2.2. Edit Fields Purpose**: Prepares the unique LINE user ID for the push message. Configuration**: Field: line_uid: Uxxxxxxxxxxxx 2.3. Line: Push Message Purpose**: Sends a test message to a specific LINE user. Configuration**: Method: POST URL: https://api.line.me/v2/bot/message/push JSON Body: { "to": "{{ $json.line_uid }}", "messages": [ { "type": "text", "text": "推播測試" } ] } 工作流程描述 此工作流程展示如何使用 LINE Messaging API 處理兩種情境: 使用 reply token 回應使用者的訊息。 使用使用者的 user ID 發送 推播訊息。 主要功能 Webhook 整合:透過 Webhook 接收並處理來自 LINE 的訊息。 條件邏輯:檢查接收到的事件類型是否為訊息並進行處理。 回應訊息:使用 LINE 的 reply token 自動回覆使用者的訊息。 推播訊息:使用 LINE User ID 向指定用戶發送測試訊息。 預先設定 為簡化設定流程,請在 n8n 中建立 Header Auth 憑證: 名稱**:Authorization 值**:Bearer {line token} 此設定將用於認證所有 LINE Messaging API 的請求。 節點設定 1.1. Webhook from LINE Message 用途**:接收來自 LINE Messaging API 的事件。 設定**: HTTP 方法:POST 路徑:{n8n-webhook-page} 1.2. If 條件判斷 用途**:檢查接收到的事件類型是否為 message。 設定**: 條件: {{ $json.body.events[0].type }} 等於 "message" 1.3. Line: Reply with Token 用途**:使用 LINE reply token 回應使用者訊息。 設定**: 方法:POST URL:https://api.line.me/v2/bot/message/reply JSON 主體: { "replyToken": "{{ $('Webhook from Line Message').item.json.body.events[0].replyToken }}", "messages": [ { "type": "text", "text": "收到您的訊息 : {{ $('Webhook from Line Message').item.json.body.events[0].message.text }}" } ] } 2.1. 手動觸發:測試工作流程 用途**:測試推播訊息功能。 設定**:無需額外設定。 2.2. Edit Fields 用途**:準備推播訊息所需的 LINE 使用者 ID。 設定**: 欄位: line_uid:Uxxxxxxxxxxxx 2.3. Line: 推播訊息 用途**:向特定 LINE 使用者發送測試訊息。 設定**: 方法:POST URL:https://api.line.me/v2/bot/message/push JSON 主體: { "to": "{{ $json.line_uid }}", "messages": [ { "type": "text", "text": "推播測試" } ] } 完成示意圖 (Storyboard Example):
by Davide
1. How it Works This n8n workflow automates fine-tuning OpenAI models through these key steps: Manual Trigger**: Starts with the "When clicking ‘Test workflow’" event to initiate the process. Downloads a .jsonl file from Google Drive Upload to OpenAI**: Uploads the .jsonl file to OpenAI via the "Upload File" node (with purpose "fine-tune"). Create Fine-tuning Job**: Sends a POST request to the endpoint https://api.openai.com/v1/fine_tuning/jobs with: { "training_file": "{{ $json.id }}", "model": "gpt-4o-mini-2024-07-18" } OpenAI automatically starts training the model based on the provided file. Interaction with the Trained Model**: An "AI Agent" uses the custom model (e.g., ft:gpt-4o-mini-2024-07-18:n3w-italia::XXXX7B) to respond to chat messages. 2. Set up Steps To configure the workflow: Prepare the Training File: Create a .jsonl file following the specified syntax (e.g., travel assistant Q/A examples). Upload it to Google Drive and update the ID in the "Google Drive" node. Configure Credentials: Google Drive: Connect an account via OAuth2 (googleDriveOAuth2Api). OpenAI: Add your API key in the "OpenAI Chat Model" and "Upload File" nodes. Customize the Model: In the "OpenAI Chat Model" node, specify the name of your fine-tuned model (e.g., ft:gpt-4o-mini-...). Update the HTTP request body (Create Fine-tuning Job) if needed (e.g., a different base model). Start the Workflow: Use the manual trigger ("Test workflow") to begin the upload and training process. Test the model via the "Chat Trigger" (chat messages). Integrated Documentation: Follow the instructions in the Sticky Notes to: Properly format the .jsonl (Step 1). Monitor progress on OpenAI (Step 2, link: https://platform.openai.com/finetune/). Note: Ensure the .jsonl file adheres to OpenAI’s required structure and that credentials are valid.
by Hubschrauber
Summary This template uses the item handling nodes, and expression-support in n8n, without using a Code node, to extract multiple attachments from a GMail (trigger input) message/event, and (conditionally) upload each of them to Google Drive. Note: There is another template titled Get Multiple Attachments from Gmail and upload them to GDrive that does basically the same thing, but it uses a Code node. Details Using Split Out instead of Code The “secret” to how this works is that n8n supports a special input field name $binary that references the entire set of (multiple) binary data sub-elements in a single input item. It may look like an expression, but in this case it is a “fixed” (literal) value used as the Fields to Split Out parameter value. Dealing with names that are prefixed/suffixed with an Index The next challenge with multiple attachments from a GMail message is that each one is still assigned different name like "attachment_0", "attachment_1", etc. This makes it tricky to reference them in a generic way. However, once n8n splits the items out, the binary in each item is always the first (i.e. index-zero / [0]) and ONLY key/value. So, that makes it possible get the key-name and attributes of the corresponding value indirectly with some clever expression syntax. Input Data Field Name -> Expression: {{ $binary.keys()[0] }} - This returns the name, regardless of whether it is "attachment_0", "attachment_1", or whatever else. Attachment file name: -> Expression: {{ $binary.values()[0].fileName }} Attachment file name extension: -> Expression: {{ $binary.values()[0].fileExtension }} Attachment file type: -> Expression: {{ $binary.values()[0].fileType }} Attachment file size (e.g. string "100 kB"): -> Expression: {{ $binary.values()[0].fileSize }} Attachment file size (numeric): -> Expression: {{ $binary.values()[0].fileSize.split(' ')[0].toNumber() }} Attachment mime type: -> Expression: {{ $binary.values()[0].mimeType }} Attachment id (storage GUID): -> Expression: {{ $binary.values()[0].id }} Flow Control Since each of the attachments becomes a single item, it is relatively straightforward to introduce other n8n nodes like If, Switch, or Filter and route each single attachment item into different workflow paths. The template demonstrates how each attachment binary could be routed based on its file size, as an example.
by Harshil Agrawal
This workflow demonstrates the use of the Split In Batches node and the Wait node to avoid API rate limits. Customer Datastore node: The workflow fetches data from the Customer Datastore node. Based on your use case, replace it with a relevant node. Split In Batches node: This node splits the items into a single item. Based on the API limit, you can configure the Batch Size. HTTP Request node: This node makes API calls to a placeholder URL. If the Split In Batches node returns 5 items, the HTTP Request node will make 5 different API calls. Wait node: This node will pause the workflow for the time you specify. On resume, the Split In Batches node gets executed node, and the next batch is processed. Replace Me (NoOp node): This node is optional. If you want to continue your workflow and process the items, replace this node with the corresponding node(s).