by Luciano Gutierrez
Instagram Auto-Comment Responder with AI Agent Integration Version: 1.1.0 ‧ n8n Version: 1.88.0+ ‧ License: MIT A fully automated workflow for managing and responding to Instagram comments using AI agents. Designed to improve engagement and save time, this system listens for new Instagram comments, verifies and filters them, fetches relevant post data, processes valid messages with a natural language AI, and posts context-aware replies directly on the original post. Key Features 💬 AI-Driven Engagement: Intelligent responses to comments via a GPT-powered agent. ✅ Webhook Verification: Handles Instagram webhook handshake to ensure secure integration. 📦 Data Extraction: Maps incoming payload fields (user ID, username, message text, media ID) for processing. 🚫 Self-Comment Filtering: Automatically skips comments made by the account owner to prevent loops. 📡 Post Data Retrieval: Fetches the media’s id and caption from the Graph API (v22.0) before generating a reply. 🧠 Natural Language Processing: Uses a custom system prompt to maintain brand tone and context. 🔁 Automated Replies: Posts the AI-generated message back to the comment thread using Instagram’s API. 🧩 Modular Architecture: Clear separation of steps via sticky notes and dedicated HTTP Request and Agent nodes. Use Cases Social Media Automation**: Keep followers engaged 24/7 with instant, relevant replies. Community Building**: Maintain a consistent voice and tone across all interactions. Brand Reputation Management**: Ensure no valid comment goes unanswered. AI Customer Support**: Triage simple questions and direct followers to resources or support. Technical Implementation Webhook Verification Node: Webhook + Respond to Webhook Echoes hub.challenge to confirm subscription and secure incoming events. Data Extraction Node: Set Maps payload fields into structured variables: conta.id, usuario.id, usuario.name, usuario.message.id, usuario.message.text, usuario.media.id, endpoint. User Validation Node: Filter Skips processing if conta.id equals usuario.id (self-comments). Post Data Retrieval Node: HTTP Request (Get post data) GET https://graph.instagram.com/v22.0/{{ $json.usuario.media.id }}?fields=id,caption&access_token={{ credentials }} Captures the media’s caption for richer context in replies. AI Response Generation Nodes: AI Agent + OpenRouter Chat Model Uses a detailed system prompt with: Profile persona (expert in AI & automations, friendly tone). Input data (username, comment text, post caption). Filtering logic (spam, praise, questions, vague comments). Returns either the reply text or [IGNORE] for irrelevant content. Posting the Reply Node: HTTP Request (Post comment) POST {{ $json.endpoint }}/{{ $json.usuario.message.id }}/replies with message={{ $json.output }} Sends the AI answer back under the original comment. Instructions for Setup Import Workflow In n8n > Workflows > Import from File, upload the provided .json template. Configure Credentials Instagram Graph API (Header Auth or FacebookGraphApi) with instagram_basic, instagram_manage_comments scopes. OpenRouter/OpenAI API key for AI agent. Customize System Prompt Edit the AI Agent’s prompt to adjust brand tone, language (Brazilian Portuguese), length, or emoji usage. Test & Activate Publish a test comment on an Instagram post. Verify each node’s execution, ensuring the webhook, filter, data extraction, HTTP requests, and AI Agent respond as expected. Extend & Monitor Add sentiment analysis or lead capture nodes as needed. Monitor execution logs for errors or rate-limit events. Tags Social Media • Instagram Automation • Webhook Verification • AI Agent • HTTP Request • Auto Reply • Community Management
by Yang
👥 Who is this for? This workflow is ideal for virtual assistants, researchers, developers, automation specialists, and data analysts who need to regularly extract and organize structured product information (like books) from a website. It’s especially useful for those working with catalog-based websites who want to automate extraction and delivery of clean, sorted data. 🧩 What problem is this solving? Manually copying product listings like book titles and prices from a website into a spreadsheet is slow and repetitive. This automation solves that problem by scraping content using Dumpling AI, extracting the right data using CSS selectors, and formatting it into a clean CSV file that is sent to your email—all triggered automatically when a new URL is added to Google Sheets. ⚙️ What this workflow does This template automates an entire content scraping and delivery process: Watches a Google Sheet for new URLs Scrapes the HTML content of the given webpage using Dumpling AI Uses CSS selectors in the HTML node to extract each book from the page Splits the HTML array into individual items Extracts the book title and price from each HTML block Sorts the books in descending order based on price Converts the sorted data to a CSV file Sends the CSV via email using Gmail 🛠️ Setup Google Sheets Create a sheet titled something like URLs Add your product listing URLs (e.g., http://books.toscrape.com) Connect the Google Sheets trigger node to your sheet Ensure you have proper credentials connected Dumpling AI Create an account at Dumpling AI) - Generate your API key Set the HTTP Method to POST and pass the URL dynamically from the Google Sheet Use Header Auth to include your API key in the request header Make sure "cleaned": "True" is included in the body for optimized HTML output HTML Node The first HTML node extracts the main book container blocks using: .row > li The second HTML node parses out the individual fields: title: h3 > a (via the title attribute) price: .price_color Sort Node Sorts books by price in descending order Note: price is extracted as a string, ensure it's parsable if you plan to use numeric filtering later Convert to CSV The JSON data is passed into a Convert node and transformed into a CSV file Gmail Sends the CSV as an attachment to a designated email 🔄 How to customize this workflow Extract more data**: Add more CSS selectors in the second HTML node to pull fields like author, availability, or product links Switch destinations**: Replace Gmail with Slack, Google Drive, Dropbox, or another platform Adjust sorting**: Sort alphabetically or based on another extracted value Use a different source**: As long as the site structure is consistent, this can scrape any listing-like page Trigger differently**: Use a webhook, form submission, or schedule trigger instead of Google Sheets ⚠️ Dependencies and Notes This workflow uses Dumpling AI to perform the web scraping. This requires an API key and uses credits per request. The HTML node depends on valid CSS selectors. If the site layout changes, the selectors may need to be updated. Ensure you’re not scraping content from websites that prohibit automated scraping.
by GYANENDRA DWIVEDI
🚀 WhatsApp Automation Template Designed & Developed by Infridet Solutions Private Limited 🔧 Objective: Automate your lead nurturing and sales process from YouTube/Instagram → Landing Page → CRM → Email → WhatsApp → Sales → Deal Closure using tools like: 🌐 WordPress (Landing Page + Fluent Forms) 🧾 Google Sheets (Backup Log) 📩 FluentCRM (Lead Tagging + Email Sequences) 💬 Whinta.com (WhatsApp Messaging API) ⚙️ N8N (Workflow Automation Engine) 🧩 System Flow Overview: Lead Source: YouTube or Instagram CTA Landing Page: Built on WordPress with a story-driven design Form Capture: Fluent Forms with dynamic input fields Data Sync: Backup to Google Sheets Push lead to FluentCRM and tag as New Lead Email Sequence: Warm-up emails (1 to 5) Introduce offer or service WhatsApp Outreach: Send personalized message via Whinta Triggered 1 hour after form fill or last email Sales Follow-Up: Sales team handles replies manually CRM tag updated to Customer upon closing 📁 Folder Structure (Optional Git/Zip File): 📦 WhatsApp-Automation-Infridet/ │ ├── whatsapp-automation-n8n.json # N8N Flowchart Import File ├── email-templates.docx # Warm-up Email Scripts ├── whinta-api-integration.pdf # API Documentation ├── crm-tagging-notes.txt # CRM Tag Setup Details └── readme.md # This Instruction File 🛠️ Required Integrations & Setup ✅ Fluent Forms (WordPress) Embed form with Name, Email, Phone Enable webhook to N8N: /lead-capture ✅ Google Sheets Use n8n-nodes-base.googleSheets node Capture name, email, phone, source, timestamp ✅ FluentCRM REST API enabled Push contact and assign tag New Lead Setup Email Automation via tag trigger ✅ SMTP Email (Optional) Use Gmail SMTP or Brevo Trigger email on form submission ✅ Whinta.com (WhatsApp API) Send POST request Payload includes phone, message, sender_id Customize message with personalization 💬 Sample WhatsApp Message: Hey {{name}}, Gyan here from Account Craft 👋 I saw your form submission – would you like help in starting your YouTube journey this week? Let me know. I'm just one text away. ✅ 📧 Sample Email (Warmup Day 1): > Subject: Welcome to Account Craft 🚀 > Body: > Hi {{name}}, > > I’m Gyan from Account Craft. Thanks for joining us! > Here’s what’s coming next: exclusive videos, personalized tips, and real support to get your YouTube channel earning. > > Let’s go! > – Gyan 🔁 CRM Tag Updates: | Action | Tag Assigned | |-------------------|------------------| | On form fill | New Lead | | After WhatsApp | Engaged | | After sale closed | Customer | 📌 Final Output: Once completed, the system will: Log all leads into a database Automatically send emails and WhatsApp messages Notify your sales team Update lead status without manual entry > Automation Template Designed & Deployed by > Infridet Solutions Private Limited > Smart Integrations. Seamless Business. > 🌐 www.infridetsolutions.com | 📞 +91-8853354829
by Corentin Ribeyre
This template can be used to search for an email address with Icypeas. Be sure to have an active account to use this template. How it works This workflow can be divided into three steps : The workflow initiates with a manual trigger (On clicking 'execute'). It connects to your Icypeas account. It performs an HTTP request to search for an email address. Set up steps You will need a working icypeas account to run the workflow and get your API Key, API Secret and User ID. You will need a personn firstname, lastname and domain/company name to perform the search.
by Paulo Ramirez
Upload your CRM contacts to telli and schedule AI voice-agent calls Introduction to telli and AI Voice-Agent Calls telli is an innovative platform that provides AI-powered voice agents capable of making calls and performing tasks tailored to specific customer use cases. These AI voice-agents can handle a wide range of communication tasks, from appointment scheduling to customer support, with remarkable efficiency and natural conversation flow. This template is designed for businesses and organizations looking to automate their outbound calling processes using telli's AI voice-agents in conjunction with Airtable as their CRM. It solves the problem of manual call scheduling and data transfer between your CRM and calling system, saving time and reducing human error. Prerequisites telli account Airtable base with contact information n8n instance Step-by-Step Setup Guide n8n Setup: Create a new workflow in n8n. Add the Airtable node to connect to your CRM table. telli API Configuration: Log in to your telli dashboard. Locate and copy your API key under telli - Settings - API/Webhooks. Workflow Configuration: Add two HTTP Request nodes to your n8n workflow. Set the "Authorization" header in both POST requests, replacing the value with your telli API key. Configure the first request to use the /add-contact endpoint. Set up the second request to use the /schedule-call endpoint. Data Mapping: Map the relevant fields from your Airtable node to the telli API requests. Testing and Activation: Run a test execution of your workflow. Once satisfied with the results, activate the workflow. API Endpoint Details Add Contact Endpoint URL**: https://api.telli.com/v1/add-contact Method**: POST Headers**: Authorization: YOUR-API-KEY Content-Type: application/json Payload**: { "external_contact_id": "string", "salutation": "string", "first_name": "string", "last_name": "string", "phone_number": "string", "email": "jsmith@example.com", "contact_details": {}, "timezone": "string" } Schedule Call Endpoint URL**: https://api.telli.com/v1/schedule-call Method**: POST Headers**: Authorization: YOUR-API-KEY Content-Type: application/json Payload**: { "contact_id": TELLI-CONTACT-ID, "agent_id": "string", "max_retry_days": 123, "call_details": { "message": "Hello, this is your friendly reminder!", "questions": [ { "fieldName": "email", "neededInformation": "email of the customer", "exampleQuestion": "What is your email address?", "responseFormat": "email string" } ] }, "override_from_number": "string" } Use Cases This template is versatile and can be applied to various scenarios, including: Lead Qualification*: Automatically schedule calls to new leads entered in your CRM. Appointment Reminders*: Set up calls to remind clients of upcoming appointments. Customer Feedback*: Schedule follow-up calls after product deliveries or service completions. Uploading Multiple Contacts For bulk operations, you have two options: Loop Node: Include a Loop node in your n8n workflow to process multiple contacts sequentially. Batch Endpoints: Instead of /add-contact and /schedule-call, use telli's batch endpoints: /add-contacts-batch: Add multiple contacts within an array. /schedule-calls-batch: Schedule multiple calls at once. Example of batch endpoint usage: { "contacts": [ {"name": "John Doe", "phone": "+1234567890"}, {"name": "Jane Smith", "phone": "+1987654321"} ] } By leveraging this template, you can seamlessly integrate your Airtable CRM with telli's powerful AI voice-agents, automating your outbound calling process and enhancing your customer communication strategy.
by Mark de Jonge
About the workflow The workflow reads every reply that is received from a cold email campaign and qualifies if the lead is interested in a meeting. If the lead is interested, a deal is made in pipedrive. You can add as many email inboxes as you need! Setup: Add credentials to the Gmail, OpenAI and Pipedrive Nodes. Add a in_campaign field in Pipedrive for persons. In Pipedrive click on your credentials at the top right, go to company settings > Data fields > Person and click on add custom field. Single option [TRUE/FALSE]. If you have only one email inbox, you can delete one of the Gmail nodes. If you have more than two email inboxes, you can duplicate a Gmail node as many times as you like. Just connect it to the Get email node, and you are good to go! In the Gmail inbox nodes, select Inbox under label names and uncheck Simplify.
by Milorad Filipovic
How it works? This workflows sends you a monthly lists of live music events for a specific location. Events are fetched from songkick.com and delivered to you by email to a provided email address(es). Each event in the list has a link to a full SongKick page where you can see more details about the event and buy tickets for it. Example email: How to set it up? First thing that this workflow needs is a location link for your desired city from the SongKick website. You can get it by following these steps: Visit songkick.com and enter the city name in the search box: From the results page, click the result that contains the location info. These will have the Location tag on top of the location name: Once on the location page, copy the url Back in the n8n workflow page, paste the url in the location parameter of the node called Setup location and email: Second thing it needs is the email address which will receive the monthly list. For this, simply enter it in the email field of the Setup location and email node. If you want to set multiple receivers, simply separate email addresses by ,: Required accounts This workflow requires you to have a properly set up Gmail account that will be used by Gmail Node to send emails. You can read more about how to create credentials for a Gmail node in n8n documentation here.
by JPres
👥 Who Is This For? Sales and marketing teams seeking efficient, hands‑free generation of personalized slide decks for each prospect from CSV lead lists. 🛠 What Problem Does This Solve? Manually editing presentation decks for large lead lists is slow and error‑prone. This workflow fully automates: Importing and parsing CSV lead data Logging leads and outputs in Google Sheets Duplicating a master Slides template per lead Injecting lead‑specific variables into slides 🔄 Node‑by‑Node Breakdown | Step | Node | Purpose | | ---- | ---------------------------------------- | -------------------------------------------------------- | | 1 | New Leads Arrived | Detect new CSV uploads in Drive | | 2 | File Type? | Filter for .csv files only | | 3 | Download by ID | Download the CSV content | | 4 | Create new Sheet | Create a Google Sheet to record lead data | | 5 | Combine Empty New Document with CSV Data | Structure each lead record for slide creation | | 6 | Merge Data for new Lead Document | Map template placeholders to lead values | | 7 | Get all Leads | Retrieve sheet rows to iterate through each lead | | 8 | MoveToLeadListFolder | Move processed CSV to an archive folder | | 9 | Copy Slides Template | Make a copy of the master Slides deck | | 10 | Create Custom Presentation | Replace placeholders in the copied deck with lead data | | 11 | Add Presentation ID to Lead | Write the generated presentation URL back into the Sheet | ⚙️ Pre‑conditions / Requirements n8n with Google Drive, Sheets, and Slides credentials A master Google Slides deck with placeholder tokens (e.g. {{Name}}, {{Company}}) A Drive folder for incoming CSV lead files ⚙️ Setup Instructions Import this workflow into your n8n instance. Configure the New Leads Arrived node to watch your CSV folder. Enter your Google credentials in the Drive, Sheets, and Slides nodes. Specify the master Slides template ID in the Copy Slides Template node. In Create Custom Presentation, map slide tokens to sheet column names. Disable “Keep Binary Data” in Copy Slides Template to conserve memory. Upload a sample CSV (with headers like Name, Company, Metric) to test. 🎨 How to Customize Add or remove variables by editing the CSV headers and updating the mapping in Merge Data for new Lead Document. Insert an AI/natural‑language node before slide creation to generate more advanced and personalized text blocks. Use SplitInBatches to throttle API calls and avoid rate‑limit errors. Add error‑handling branches to capture and log failed operations. 🔐 Security and Privacy The workflow uses placeholder variables for file and folder IDs, so no actual IDs are exposed in the template. Ensure OAuth scopes are limited to only the required Google APIs.
by Niklas Hatje
Use case When collecting new leads via a form, you need to follow up on new submissions. Often, this required a lot of manual work that includes reviewing each submission, checking if they meet your criteria and then outreaching. With this workflow you can do all of that fully automatically and save a lot of your valuable time. What this workflow does This workflow runs every time you're receiving a new submission from an n8n form. It then filters out typical personal emails (such as Gmail, Hotmail, Yahoo etc.) before enriching the submission via Clearbit. It then checks, if the company of the submitter is a B2B company and has more than 499 employees. If it does, it sends an email via Gmail to the user. Setup Add the Clearbit and Gmail credentials Click on Test Workflow Enter your own email (which needs to be a business email to work) in the Form Check your email Once you're happy don't forget to activate this workflow How to adjust this template Replace the form trigger with your form provider of choice (e.g. Typeform, SurveyMonkey, Google Forms etc.) Adjust the criteria to your needs via the If node Adjust the email you're sending in the Gmail node
by Yang
Who is this for? This template is for sales teams, agencies, or local service providers who want to quickly generate cold outreach lists and automatically call local businesses with a Vapi AI assistant. It’s perfect for automating cold calls from scraped local listings with no manual dialing or research. What problem is this workflow solving? Finding leads and initiating outreach calls can be time-consuming. This workflow automates the process: it scrapes business listings from Google Maps using Dumpling AI, extracts phone numbers, filters out incomplete data, formats the numbers, and uses Vapi to make outbound AI-powered calls. Every call is logged in Google Sheets for follow-up and tracking. What this workflow does Starts manually and pulls search queries (e.g., "plumbers in Austin") from Google Sheets. Sends each query to Dumpling AI’s Google Maps scraping endpoint. Splits the returned business data into individual leads. Extracts key info like business name, website, and phone number. Filters to only keep leads with valid phone numbers. Formats phone numbers for Vapi dialing (adds +1). Calls each business using Vapi AI. Logs each successful call in a Google Sheet. Setup Google Sheets Setup Create a sheet with business search queries in the first column (e.g., best+restaurants+in+Chicago) Make sure the tab name is set and authorized in your credentials. Connect your Google Sheets account in the Get Search Keywords from Google Sheets node. Dumpling AI Setup Go to dumplingai.com Generate an API Key and connect it as a header token in the Scrape Google Map Businesses using Dumpling AI node Vapi Setup Sign into Vapi and create an assistant Get your assistantId and phoneNumberId Insert these into the JSON payload of the Initiate Vapi AI Call to Business node Add your Vapi API key to the credentials section Call Logging Create another tab in your sheet (e.g., “leads”) with these headers: company name phone number website This will be used in the Log Called Business Info to Sheet node How to customize this workflow to your needs Modify the business search terms in your Google Sheet to target specific industries or locations. Add filters to exclude certain businesses based on ratings, keywords, or location. Update your Vapi assistant script to match the type of outreach or pitch you’re using. Add additional integrations (e.g., CRM logging, Slack notifications, follow-up emails). Change the trigger to run on a schedule or webhook instead of manually. Nodes and Functions Breakdown Start Workflow Manually: Initiates the automation manually for testing or controlled runs. Get Search Keywords from Google Sheets: Reads search phrases from the spreadsheet. Scrape Google Map Businesses using Dumpling AI: Sends each search query to Dumpling AI and receives matching local business data. Split Each Business Result: Breaks the returned array of businesses into individual records for processing. Extract Business Name, Phone and website: Extracts title, phone, and website from each business record. Filter Valid Phone Numbers Only: Ensures only entries with a phone number move forward. Format Phone Number for Calling: Adds a +1 country code and strips non-numeric characters. Initiate Vapi AI Call to Business: Uses the business name and number to initiate a Vapi AI outbound call. Log Called Business Info to Sheet: Appends business details into a Google Sheet for tracking. Notes You must have valid API keys and authorized connections for Dumpling AI, Google Sheets, and Vapi. Make sure to handle API rate limits if you're running the workflow on large datasets. This workflow is optimized for US-based leads (+1 country code); adjust the formatting node if calling internationally.
by Don Jayamaha Jr
⏱️ Analyze Tesla (TSLA) short-term market structure and momentum using 6 technical indicators on the 15-minute timeframe. This AI agent tool is part of the Tesla Quant Trading AI Agent system. It is designed to detect intraday shifts in volatility, trend strength, and potential reversal signals. ⚠️ Not standalone. This agent is triggered via Execute Workflow by the Tesla Financial Market Data Analyst Tool. 🔌 Requires: Tesla Quant Technical Indicators Webhooks Tool Alpha Vantage Premium API Key 📊 What It Does This workflow pulls the latest 20 data points for 6 key technical indicators from a webhook-powered source, then uses GPT-4.1 to interpret market momentum and structure: Connected Indicators: RSI (Relative Strength Index)** MACD (Moving Average Convergence Divergence)** BBANDS (Bollinger Bands)** SMA (Simple Moving Average)** EMA (Exponential Moving Average)** ADX (Average Directional Index)** The output is a structured JSON with: Market summary Timeframe (15m) Indicator values 📋 Sample Output { "summary": "TSLA shows fading momentum. RSI dropped below 60, MACD is flattening, and BBANDS are tightening. Expect short-term consolidation.", "timeframe": "15m", "indicators": { "RSI": 58.3, "MACD": { "macd": -0.020, "signal": -0.018, "histogram": -0.002 }, "BBANDS": { "upper": 183.10, "lower": 176.70, "middle": 179.90, "close": 177.60 }, "SMA": 178.20, "EMA": 177.70, "ADX": 19.6 } } 🧠 Agent Components | Module | Role | | --------------------- | -------------------------------------------------------- | | Webhook Data Node | Calls /15minData endpoint for Alpha Vantage indicators | | LangChain Agent | Parses indicator payloads and generates reasoning | | OpenAI GPT-4.1 | Powers the AI logic to interpret technical structure | | Memory Module | Maintains session consistency for multi-agent calls | 🛠️ Setup Instructions Import Workflow into n8n Name it: Tesla_15min_Indicators_Tool Configure Webhook Source Install and publish: Tesla_Quant_Technical_Indicators_Webhooks_Tool Ensure /15minData is publicly reachable (or tunnel-enabled) Add Credentials Alpha Vantage API Key (HTTP Query Auth) OpenAI GPT-4.1 (OpenAI Chat Model) Link as Sub-Agent This workflow is not triggered manually. It is executed using Execute Workflow by: 👉 Tesla_Financial_Market_Data_Analyst_Tool Pass in: message (optional) sessionId (for short-term memory linkage) 📌 Sticky Notes Summary 🟢 Trigger Integration – Receives sessionId and message from parent 🟡 Webhook Fetcher – Pulls Alpha Vantage data from /15minData 🧠 GPT-4.1 Reasoning – Produces structured JSON insight 🔵 Session Memory – Maintains evaluation flow across tools 📘 Tool Description – Explains indicator use and AI output format 🔒 Licensing & Author © 2025 Treasurium Capital Limited Company All logic, formatting, and agent design are protected under copyright. No resale or public re-use without permission. Created by: Don Jayamaha Creator Profile: https://n8n.io/creators/don-the-gem-dealer/ 🚀 Build faster intraday Tesla trading models using clean 15-minute indicator insights—processed by AI. Required by the Tesla Financial Market Data Analyst Tool.
by Don Jayamaha Jr
🕒 Evaluate Tesla (TSLA) price action and market structure on the 1-hour timeframe using 6 real-time indicators. This sub-agent is designed to feed mid-term technical insights into the Tesla Financial Market Data Analyst Tool. It uses GPT-4.1 to interpret Alpha Vantage indicator data delivered via secure webhooks. ⚠️ This workflow is not standalone and is executed via Execute Workflow. 🔌 Requires: Tesla Quant Technical Indicators Webhooks Tool Alpha Vantage Premium API Key 🔧 Connected Indicators This tool fetches and analyzes the latest 20 datapoints for: RSI (Relative Strength Index)** MACD (Moving Average Convergence Divergence)** BBANDS (Bollinger Bands)** SMA (Simple Moving Average)** EMA (Exponential Moving Average)** ADX (Average Directional Index)** 📋 Sample Output { "summary": "TSLA is gaining strength on the 1-hour chart. RSI is rising, MACD has crossed bullish, and BBANDS are widening.", "timeframe": "1h", "indicators": { "RSI": 62.1, "BBANDS": { "upper": 176.90, "lower": 169.70, "middle": 173.30, "close": 176.30 }, "SMA": 174.20, "EMA": 175.60, "ADX": 27.5, "MACD": { "macd": 0.84, "signal": 0.65, "histogram": 0.19 } } } 🧠 Agent Components | Component | Role | | ------------------------------ | -------------------------------------------------- | | 1hour Data | Pulls Alpha Vantage indicator data via webhook | | Tesla 1hour Indicators Agent | Interprets signals using structured GPT-4.1 prompt | | OpenAI Chat Model | GPT-4.1 LLM performs analysis | | Simple Memory | Maintains session context | 🛠️ Setup Instructions Import Workflow into n8n Name it: Tesla_1hour_Indicators_Tool Install the Webhook Fetcher Tool 👉 Required: Tesla_Quant_Technical_Indicators_Webhooks_Tool This agent expects webhook /1hourData to return pre-cleaned data Add Credentials Alpha Vantage Premium API Key (via HTTP Query Auth) OpenAI GPT-4.1 credentials Configure for Sub-Agent Use Triggered only via Execute Workflow from: 👉 Tesla Financial Market Data Analyst Tool Inputs: message (optional) sessionId (required for memory linkage) 📌 Sticky Notes Overview 🟢 Trigger Setup – Activated only by the parent agent 📊 1h Webhook Fetcher – Calls Alpha Vantage via secured endpoint 🧠 AI Agent Summary – Interprets trend/momentum from indicator data 🔗 GPT Model Notes – GPT-4.1 parses and explains technical alignment 📘 Documentation Sticky – Embedded in canvas with full walkthrough 🔐 Licensing & Support © 2025 Treasurium Capital Limited Company This tool is part of a proprietary multi-agent AI architecture. No commercial reuse or redistribution permitted. 🔗 Author: Don Jayamaha 🔗 Templates: https://n8n.io/creators/don-the-gem-dealer/ 🚀 Detect TSLA trend shifts and validate setups with 1-hour technical clarity—powered by Alpha Vantage + GPT-4.1. This tool is required by the Tesla Financial Market Data Analyst Tool.