by ankitkansaldev
📰 Comprehensive Reuters News Intelligence System With Brightdata & Telegram Alerts A powerful n8n automation workflow that scrapes the latest Reuters news articles using Bright Data's web scraping capabilities and delivers intelligent news summaries directly to your Telegram chat. 📋 Overview This workflow provides an automated news intelligence solution that monitors Reuters for breaking news, analyzes content using Claude AI, and delivers personalized news alerts. Perfect for journalists, researchers, traders, and anyone who needs real-time access to Reuters content with AI-powered insights. ✨ Key Features 🎯 Form-Based Input: Easy web form to specify keywords and news type preferences 🤖 AI-Powered Processing: Uses Claude 4 Sonnet for intelligent content analysis 🌐 Professional Scraping: Leverages Bright Data's Reuters dataset for reliable data extraction 📱 Telegram Integration: Instant notifications delivered to your preferred chat ⏰ Smart Waiting: Built-in delays to ensure data processing completion 🔄 Status Monitoring: Automatic scraping status checks with retry logic 📊 Data Formatting: Clean, structured output with essential article fields 🚀 Scalable Design: Handles multiple articles with batch processing 🎯 What This Workflow Does Input Keywords**: Search terms for Reuters articles (e.g., "Election", "Gas shocks", "Technology") News Type**: Sorting preference (newest, oldest, relevance) Form Submission**: Web-based interface for easy interaction Processing Form Trigger: Captures user input via web form interface AI Agent Orchestration: Claude processes requirements and coordinates actions Bright Data Request: Initiates Reuters scraping with specified keywords Status Monitoring: Checks scraping progress with smart retry logic Data Retrieval: Fetches completed article data when ready Content Processing: Extracts and formats essential article information Telegram Delivery: Sends structured news updates to specified chat Output Data Points | Field | Description | Example | |-------|-------------|---------| | article_title | The main headline of the article | "Global Energy Markets Face Uncertainty" | | headline | Reuters display headline | "Oil Prices Surge Amid Supply Concerns" | | description | Article summary/meta description | "Energy markets react to geopolitical tensions..." | | content | Full article body text | "LONDON (Reuters) - Oil prices jumped 3%..." | | article_url | Direct link to Reuters article | "https://reuters.com/business/energy/..." | 🚀 Setup Instructions Prerequisites n8n instance (self-hosted or cloud) Bright Data account with Reuters dataset access Telegram bot and channel setup Claude API access (Anthropic) 15-20 minutes for complete setup Step 1: Import the Workflow Copy the JSON workflow code from the provided file In n8n: Workflows → + Add workflow → Import from JSON Paste JSON content and click Import Save the workflow with a descriptive name Step 2: Configure Bright Data Integration Set up Bright Data credentials: In n8n: Credentials → + Add credential → HTTP Header Auth Name: "Bright Data API" Add header: Authorization: Bearer YOUR_BRIGHT_DATA_API_KEY Test the connection Configure Reuters dataset: Ensure access to dataset ID: gd_lyptx9h74wtlvpnfu Verify Reuters scraping permissions in Bright Data dashboard Check monthly quota and usage limits Step 3: Configure Anthropic Claude Integration Set up Anthropic credentials: In n8n: Credentials → + Add credential → Anthropic API Enter your Anthropic API key Test the connection Update model settings: Open "Anthropic Chat Model" node Verify model is set to: claude-sonnet-4-20250514 Adjust temperature and other parameters if needed Step 4: Configure Telegram Notifications Create Telegram Bot: Message @BotFather on Telegram Use /newbot command and follow instructions Save the bot token provided Get Chat ID: Add your bot to desired channel/group Send a test message Visit: https://api.telegram.org/bot{BOT_TOKEN}/getUpdates Find your chat ID in the response Set up Telegram credentials: In n8n: Credentials → + Add credential → Telegram API Enter bot token from BotFather Test the connection Update Telegram node: Open "Telegram" node Replace DEMO_CHAT_ID with your actual chat ID Customize message format if needed Step 5: Configure Web Form Set up form trigger: Open "On form submission" node Note the webhook URL provided Customize form title and fields if needed Test form functionality: Access the webhook URL in your browser Fill out test form with sample keywords Verify form submission triggers workflow Step 6: Update Node Configurations Update HTTP Request nodes: Replace BRIGHT_DATA_API_KEY with actual credentials reference Verify dataset ID matches your Bright Data setup Check request parameters and headers Configure Data Formatting: Open "Data Formatting" node Review JavaScript code for field extraction Modify output fields if additional data needed Step 7: Test & Activate Run initial test: Submit form with test keywords (e.g., "Technology") Monitor workflow execution in n8n Check for Telegram message delivery Verify data flow: Confirm Bright Data snapshot creation Check status monitoring functionality Validate final data formatting Activate workflow: Toggle workflow to "Active" status Monitor for any execution errors Set up error notifications if needed 📖 Usage Guide Submitting News Requests Access the form: Navigate to your webhook URL Form title: "Reuters News Intelligence" Fill required fields: Keywords: Enter search terms (e.g., "Climate Change", "Tech Earnings") News Type: Select sorting preference: newest: Most recent articles first oldest: Historical articles first relevance: Best matching articles Submit and wait: Click submit to trigger workflow Expect 1-3 minutes for processing Check Telegram for article delivery Understanding the Process The workflow follows this sequence: Form submission triggers Claude AI agent Claude coordinates all scraping and processing steps Bright Data scrapes Reuters with your keywords System waits for scraping completion (60 seconds) Status check confirms data readiness Article data is retrieved and formatted Telegram message delivers final results Reading Telegram Results Each article includes: Clickable URL** to full Reuters article Headline** for quick scanning Description** with article summary Content preview** with key details 🔧 Customization Options Modifying Search Parameters Edit the "HTTP Request" node to adjust: { "keyword": "Your search terms", "sort": "newest|oldest|relevance", "limit_per_input": "2-10 articles" } Customizing Telegram Messages Update the "Telegram" node message format: 🗞️ {{ $json.heading }} 📖 {{ $json.description }} 🔗 Read Full Article 📅 Retrieved: {{ $now.format('YYYY-MM-DD HH:mm') }} Adding Email Notifications Add "Email" node after "Data Formatting" Configure SMTP credentials Create HTML email template with article data Connect to same input as Telegram node Enhancing AI Processing Modify the MCP Agent prompt to: Request specific article sections Add sentiment analysis Include market impact assessment Generate executive summaries Extract key quotes and statistics Adding Data Storage Include database storage by: Adding "Postgres" or "MySQL" node Creating articles table with schema Storing full article data for analysis Building historical news database 🚨 Troubleshooting Common Issues & Solutions 1. "Bright Data snapshot failed" Cause**: Invalid API key or dataset access Solution**: Verify credentials and dataset permissions in Bright Data dashboard 2. "No articles found" Cause**: Keywords too specific or no matching content Solution**: Try broader search terms, check Reuters availability 3. "Telegram message not sent" Cause**: Invalid bot token or chat ID Solution**: Re-verify bot setup with @BotFather, confirm chat ID 4. "Workflow timeout" Cause**: Bright Data scraping taking too long Solution**: Increase timeout in "sleep tool" or add retry logic 5. "Data formatting errors" Cause**: Unexpected response structure from Bright Data Solution**: Check "Data Formatting" node logs, adjust parsing logic 6. "Claude API errors" Cause**: API key issues or rate limiting Solution**: Verify Anthropic credentials, check usage limits Advanced Troubleshooting Monitor execution logs** in n8n for detailed error messages Test individual nodes** by running them separately Verify JSON structures** ensure data flows correctly between nodes Check rate limits** for both Bright Data and Claude API Add error handling** implement try-catch logic for robust operation 📊 Use Cases & Examples 1. Financial News Monitoring Goal: Track market-moving Reuters financial news Keywords: "earnings", "fed rates", "market outlook" Instant alerts for breaking financial news Support trading and investment decisions 2. Competitive Intelligence Goal: Monitor industry-specific news for business insights Keywords: Company names, industry terms Track competitor mentions and market developments Generate competitive analysis reports 3. Crisis Communications Goal: Stay informed during breaking news events Keywords: "breaking", location names, event types Rapid response to developing situations Crisis management team notifications 4. Research & Academia Goal: Gather news data for academic research Keywords: Research topics, geographic regions Build datasets for media analysis Track news coverage patterns over time ⚙ Advanced Configuration Scaling for High Volume To handle larger news monitoring needs: Increase batch processing: Modify limit_per_input parameter Add parallel processing branches Implement queue management Add rate limiting: Insert delays between requests Monitor API usage quotas Implement exponential backoff Database integration: Store articles in PostgreSQL/MySQL Add deduplication logic Create search and filter capabilities Multi-Channel Distribution Expand beyond Telegram: Slack integration: Add Slack webhook node Format messages for team channels Include interactive buttons Email newsletters: Compile daily/weekly summaries HTML formatting with images Subscriber management API endpoints: Create webhook responses Build news API for other systems Real-time data streaming AI Enhancement Options Leverage Claude's capabilities further: Sentiment analysis: Add sentiment scoring to articles Track market sentiment trends Generate mood indicators Summarization: Create executive summaries Extract key points Generate abstracts Classification: Categorize articles by topic Tag with relevant industries Priority scoring system 📈 Performance & Limits Expected Performance Single request**: 60-120 seconds average processing time Articles per request**: 2-10 (configurable) Data accuracy**: 95%+ for standard Reuters articles Success rate**: 90%+ for accessible content Daily capacity**: Limited by Bright Data quotas Resource Usage Memory**: ~200MB per execution API calls**: 1 Bright Data + 1 Claude + 1 Telegram per execution Bandwidth**: ~5-10MB per article scraped Execution time**: 1-3 minutes per request Scaling Considerations Rate limiting**: Respect API quotas and limits Error handling**: Implement comprehensive retry logic Data validation**: Verify article quality and completeness Cost monitoring**: Track API usage across services Performance optimization**: Cache common requests when possible 🤝 Support & Community Getting Help n8n Community**: community.n8n.io Bright Data Support**: Contact through dashboard Anthropic Documentation**: docs.anthropic.com Telegram Bot API**: core.telegram.org/bots Contributing Share workflow improvements with the community Report issues and suggest enhancements Create variations for specific news sources Document best practices and optimizations 📋 Quick Setup Checklist Before You Start ☐ n8n instance running (self-hosted or cloud) ☐ Bright Data account with Reuters dataset access ☐ Anthropic API key for Claude access ☐ Telegram bot created via @BotFather ☐ 20 minutes for complete setup Setup Steps ☐ Import Workflow - Copy JSON and import to n8n ☐ Configure Bright Data - Set up API credentials and test ☐ Configure Claude - Add Anthropic API credentials ☐ Setup Telegram - Create bot and get chat ID ☐ Update Credentials - Replace all demo values with real ones ☐ Test Form - Submit test request and verify flow ☐ Check Telegram - Confirm message delivery ☐ Activate Workflow - Turn on for production use Ready to Use! 🎉 Your workflow form URL: https://your-n8n-instance.com/webhook/your-webhook-id 🎯 Happy News Monitoring! This workflow provides a solid foundation for automated Reuters news intelligence. Customize it to fit your specific monitoring needs and use cases. The combination of Bright Data's reliable scraping, Claude's AI analysis, and Telegram's instant delivery creates a powerful news monitoring solution.
by Agentick AI
This n8n template demonstrates how to automate invoice data extraction from PDF attachments received via Gmail. Using LlamaParse and Gemini LLM, this workflow parses structured fields like PO numbers, line items, tax amounts, and totals — and stores them neatly into a Google Sheet. Perfect for use cases such as: 💼 Finance teams managing vendor invoices 📊 Bookkeeping workflows 🔄 Automating monthly reconciliation Good to Know At the time of writing, LlamaParse and Gemini may involve API usage costs depending on your subscription tier. Check LlamaIndex Pricing and Gemini Pricing for updated info. LlamaParse provides Markdown-formatted parsed output which is then passed to an LLM for structured field extraction. Gemini models may be geo-restricted. If you encounter "model not found" errors, your region might not be supported. How it Works Trigger: Watches your Gmail for new emails with PDF attachments. Email Filter: Ensures we only parse fresh emails not already labeled as "invoice synced". LlamaParse Upload: Uploads the PDF to LlamaParse’s parsing endpoint. Status Polling: Periodically checks whether the parsing is complete. Download Markdown: Once ready, it fetches the parsed invoice in Markdown format. AI Parsing with Gemini: Sends the Markdown to Gemini LLM to extract structured JSON (like PO number, line items, taxes, etc.) using a predefined schema. Google Sheets Upload: Stores extracted data into a predefined spreadsheet. Labeling: Marks the email as “invoice synced” to avoid reprocessing. How to Use The trigger is based on Gmail, but you can replace this with a webhook or manual trigger for testing. Setup Instructions Gmail API Enable Gmail API in Google Cloud Console. Connect your Gmail account in n8n credentials. Allow read + modify access. Google Sheets Create a new Google Sheet with the following headers (row 1): Date | Vendor Name | Invoice Number | PO Number | Line Items | Subtotal | Tax | Total Amount Connect Google Sheets in n8n and paste the Sheet ID in the node. You can customise the google sheet basis your requirement. LlamaParse Get a LlamaIndex API Key from LlamaIndex. Use the LlamaParse upload and polling nodes to process your PDFs. Gemini (via Vertex AI) Set up Gemini access in GCP. Use the Gemini 2.5 Model. Construct a structured prompt to extract required fields. Labeling Create a Gmail label named "Invoice Synced" for tracking processed emails. Requirements Gmail account with API access LlamaParse (LlamaIndex) account with API Key Google Sheets API credentials Access to Gemini 2.5 model via Google Vertex AI Customising This Workflow This template is just the beginning. You can expand it to: Auto-generate invoices back to vendors Run duplicate checks before inserting into Sheets Integrate with accounting tools like Zoho, QuickBooks, or Tally Trigger Slack/Email notifications on specific vendors or high invoice amounts
by simonscrapes
Use Case Generate accurate search volume data for SEO keyword research: You have a list of potential keywords to target for your website SEO but don't know their actual search volume You need historical data to identify seasonal trends in keyword popularity You want to assess keyword difficulty to prioritize your content strategy You need data-driven insights for planning your SEO campaigns What this Workflow Does The workflow connects to Google's Keyword Planner API to retrieve keyword metrics for your SEO research: Fetches monthly search volume for each keyword Provides historical trends data for the past 12 months Calculates keyword difficulty scores Delivers competition metrics from Google Ads Setup Fill the Set 20 Keywords with up to 20 Keywords of your choosing in an array e.g. ["keyword 1", "keyword 2",...] Create a Google Ads API account and add credentials to Get Search Data node Replace the Connect to your own database with your own database for the output How to Adjust it to Your Needs Change the Set 20 Keywords node input to a source of your choosing e.g. Airtable database with 20 keywords Connect to output source of your choosing More templates and n8n workflows >>> @simonscrapes
by James Francis
This workflow contains community nodes that are only compatible with the self-hosted version of n8n. Overview When applying for freelance jobs on Upwork, minutes matter. The first quality application is more often than not the one that's ultimately selected. Subscribers to Upwork's Freelancer Plus receive email job alerts, but filters are very limited. As a result, it takes a lot of time to manually go through each email and determine if each job fits your criteria. This workflow scans your Gmail every few minutes, finds all Upwork job alerts, scores them based on your profile/preferences, and sends a Slack channel message for jobs that are strong potential matches. How it works Scans Gmail for Upwork job alerts every few minutes Extracts all available job data from each email Scores the job based on profile information and criteria you provide Sends a Slack notification for all jobs that meet a given score threshold Disclaimers This workflow polls Gmail for new messages every 10 minutes. A workflow execution will be used each time, regardless of whether the Gmail scan finds anything. You may want to adjust this frequency based on the amount of workflow executions you want to use. The AI matching process is based only on the information included in the email body (job title, description snippet and metadata). It is against Upwork's Terms of Service to scrape a full job posting. Despite this, the quality of the results in our testing is high for most use cases. Required Setup Subscribe to Upwork's Freelancer Plus plan to enable job alerts ($19.99/mo at the time of this posting) Create Gmail and Open Router (or an LLM provider of your choice) credentials and select them in the Gmail / LLM Model nodes Create a Slack app that has at least the chat:write.public and channels:read scopes, install it into your workspace, and use your apps OAuth Token to create a Slack API credential in n8n IMPORTANT: In the "Opportuntity Scorer" node, replace the text in between the <my_profile> tags with your freelancer bio. For best results, include as much detail as possible about your skillset, experience, tool familiarity, and job preferences. Update the filter with your notification threshold preference(s) and update the Slack channel to send notifications to in the last Slack node If you have any questions or feedback about this workflow, or would like me to build custom workflows for your business, email me at n8n@paperjam.agency.
by Airtop
Use Case Turn any web page into a compelling LinkedIn post — complete with an AI-generated image. This automation is ideal for sharing content like blog posts, case studies, or product updates in a polished and engaging format. What This Automation Does Given a page URL and optional user instructions, this automation: Scrapes the content of the webpage Uses AI to write a clear, educational, and LinkedIn-optimized post Sends both to Slack for review and approval Handles feedback and revisions via Slack interactions Input: Page URL** — The link to the webpage (required) Instructions** — Optional notes on tone, emphasis, or format Output: LinkedIn post text Slack message with review/approval options How It Works Form Submission: User inputs a web page and optional instructions. Web Scraping: Uses Airtop to extract page content. Post Generation: AI agent writes a post based on the page and instructions. Slack Review Flow: Post and image sent to Slack for feedback User can approve, request revisions, or decline Revisions trigger reprocessing steps automatically Final Post Delivery: Approved post is sent back to Slack, ready to publish. Setup Requirements Generate an Airtop API key completely free. Configure your OpenAI credentials for post and image prompt generation Slack OAuth credentials and a Slack channel Next Steps Post Directly**: Add LinkedIn publishing to automate the full content workflow. Template Variations**: Offer post style presets (e.g., technical, story-driven, short-form). CRM Sync**: Save approved posts and stats in Airtable or Notion for team use. Read more about generating social content using AI
by sateshcharan
Who is this template for? This workflow template is designed for DevOps, Engineering, and Managed Service Provider professionals seeking alerts on various channels, with each channel being logically chosen based on the severity of the event. How it works Each time a new event occurs, the workflow runs (powered by TwentyCRM's native Webhooks feature). After filtering for the required data from the webhook, the filtered data is logged using Google Sheets. Based on the eventType from the webhook, we conditionally select a predefined messaging channel and send updates or alerts through it. Set up instructions Complete the Set up credentials step when you first open the workflow. You'll need a Google-OAuth2.0 with Gmail API & Google Sheets Scope, Slack with OAuth2.0 - chat:write scopes. Set up the Webhook in TwentyCRM, linking the On new TwentyCRM event Trigger with your TwentyCRM App. Set the correct channel to send to in the Post message in channel step. After testing your workflow, swap the Test URL to Production URL in TwentyCRM and activate your workflow. Template was created in n8n v1.63.4.
by Andrew
Who is this for? This workflow is designed for developers, DevOps engineers, and automation specialists who manage multiple n8n workflows and need a reliable way to monitor for failures and receive alerts in real time. What problem is this workflow solving? Monitoring multiple workflows can be challenging, especially when silent failures occur. This workflow helps ensure you're immediately informed whenever another workflow fails, reducing downtime and improving system reliability. What this workflow does The solution consists of two parts: ERROR NOTIFIER: A centralized workflow that sends alerts through your chosen communication channel (e.g., Telegram, WhatsApp, Gmail). ERROR ALERTER: A node snippet to be added to any workflow you want to monitor. It captures errors and triggers the ERROR NOTIFIER workflow. Once set up, this system provides real-time error alerts for all integrated workflows. Setup Import both workflows: ERROR NOTIFIER (centralized alert handler) ERROR ALERTER (to be added to your monitored workflows) Add credentials for your preferred alert channel: WhatsApp (OAuth or API) Telegram Gmail Discord Slack Activate the workflows: Ensure ERROR NOTIFIER is active and ready to receive triggers. Paste ERROR ALERTER at the end of each workflow you want to monitor, connecting it to the error branch. Sign up for a free consultation and find out how n8n can help you.
by Leonard
Unlock AI-Driven Research with Jina AI (No API Key Needed!) Following the success of Open Deep Research 1.0, we are excited to introduce an improved and fully free version: AI-Powered Research with Jina AI Deep Search. This workflow leverages Jina AI’s Deep Search API, a free and powerful AI research tool that requires no API key. It automates querying, analyzing, and formatting research reports, making AI-driven research accessible to everyone. Key Features No API Keys Required** - Start researching instantly without setup hassle. Automated Deep Search* - Uses Jina AI to fetch *relevant and high-quality information**. Structured AI Reports** - Generates clear, well-formatted research documents in markdown. Flexible and Customizable* - Modify the workflow to fit *your specific research needs**. Ideal for Researchers, Writers & Students** - Speed up your research workflow. Use Cases This workflow is particularly useful for: Researchers** - Quickly gather and summarize academic papers, online sources, and deep web content. Writers & Journalists** - Automate background research for articles, essays, and investigative reports. Students & Educators** - Generate structured reports for assignments, literature reviews, or presentations. Content Creators** - Find reliable sources for blog posts, videos, or social media content. Data Analysts** - Retrieve contextual insights from various online sources for reports and analysis. How It Works The user submits a research query via chat. The workflow sends the query to Jina AI’s Deep Search API. The AI processes and generates a well-structured research report. A code node formats the response into clean markdown. The final output is a structured, easy-to-read AI-generated report. Pre-Conditions & Requirements An n8n instance (self-hosted or cloud). No API keys needed** – Jina AI Deep Search is completely free. Basic knowledge of n8n workflow automation is recommended for customization. Customization Options This workflow is fully modular, allowing users to: Modify the query prompt to refine the research focus. Adjust the report formatting to match personal or professional needs. Expand the workflow by adding additional AI tools or data sources. Integrate it with other workflows in n8n to enhance automation. Users are free to connect it with other workflows, add custom nodes, or tweak existing configurations. Getting Started Setup Time: Less than 5 minutes Import the workflow into n8n. Run the workflow and input a research topic. Receive a fully formatted AI-generated research report. Try It Now! Start your AI-powered research with Jina AI Deep Search today! Get the workflow on n8n.io
by David Roberts
Overview This workflow takes some French text, and translates it into spoken audio. It then transcribes that audio back into text, translates it into English and generates an audio file of the English text. To do so, it uses ElevenLabs (which has a free tier) and OpenAI. Setup These steps should only take a few minutes: In ElevenLabs, add a voice to your voice lab and copy its ID. Add it to the 'Set voice ID' node Get your ElevenLabs API key (click your name in the bottom-left of ElevenLabs and choose ‘profile’) In the 'Generate French audio' node, create a new header auth cred. Set the name to xi-api-key and the value to your API key In the 'credential' field of the 'Transcribe audio' node, create a new OpenAI cred with your OpenAI API key Run the workflow by clicking the orange button at the bottom of the canvas
by Mario
Purpose This workflow allows you to transfer credentials from one n8n instance to another. How it works A multi-form setup guides you through the entire process You get to choose one of your predefined (in the Settings node) remote instances first Then all credentials of the current instance are being retrieved using the Execute Command node On the next form page you can select one of the credentials by their name and initiate the transfer Finally the credential is being created on the remote instance using the n8n API. A final form ending indicates if that action succeeded or not. Setup Select your credentials in the nodes which require those Configure your remote instance(s) in the Settings node Every instance is defined as object with the keys name, apiKey and baseUrl. Those instances are then wrapped inside an array. You can find an example described within a note on the workflow canvas. How to use Grab the (production) URL of the Form from the first node Open the URL and follow the instructions given in the multi-form Disclaimer Please note, that this workflow can only run on self-hosted n8n instances, since it requires the Execute Command Node. Security: Beware, that all credentials are being decrypted and processed within the workflow. Also the API keys to other n8n instances are stored within the workflow. This solution is primarily meant for transferring data between testing environments. For production use consider the n8n enterprise edition which provides a reliable way to manage credentials across different environments.
by ibrhdotme
This is a simple workflow that grabs HackerNews front-page headlines from today's date across every year since 2007 and uses a little AI magic (Google Gemini) to sort 'em into themes, sends a neat Markdown summary on Telegram. How it works Runs daily, grabs Hacker News front page for this day across every year since 2007. Pulls headlines & dates. Uses Google Gemini to sort headlines into topics & spot trends. Sends a Markdown summary to Telegram. Set up steps Clone the workflow. Add your Google Gemini API key. Add your Telegram bot token and chat ID. **Built on Day-01 as part of the #100DaysOfAgenticAi Fork it, tweak it, have fun!**
by Sira Ekabut
This workflow automates the collection of comments from posts on a Facebook Page. Providing clean, structured data for analysis or further automation. What this workflow does Fetches recent posts from a Facebook Page. Retrieves comments for each post. Outputs structured data of Comments and Posts for further use. Setup Facebook Graph API: Connect your Access Token with the required permissions (pages_read_engagement, pages_read_user_content). Workflow: Set the Page ID and the number of posts to fetch in the "Set Number of Latest Posts to Fetch" node.