by Obsidi8n
This workflow creates a customizable form with a dynamic dropdown field that automatically updates its options from an external data source. How it works The workflow polls an external data source (Google Sheets in this example) at regular intervals New values are processed and formatted for the dropdown The form automatically updates with the new dropdown options Set up steps Configure your data source: Default setup uses Google Sheets replace with credentials for your sheet set up the update frequency Or modify to use any other data source (API, database, etc.) Adjust the form configuration: Customize the form title and description Add or modify form fields as needed The template includes the dropdown field by default Connect form submissions: Use the "Execute Workflow" node to process form submissions This template provides a foundation for creating dynamic forms that stay synchronized with your data sources, making it ideal for situations where dropdown options need to reflect current data.
by Roninimous
This n8n workflow integrates Shopify order management with Telegram, allowing you to query open orders and order details directly through Telegram chat commands. It provides an interactive way to monitor your Shopify store orders using Telegram as an interface. Key Features Telegram Trigger: Listens for messages and callback queries from your Telegram bot. Switch Node: Routes incoming Telegram messages to different flows based on message content: /orders command to fetch all open orders Callback queries starting with /order_ to fetch details of a specific order Shopify Get Orders: Retrieves all open orders from your Shopify store using your Shopify API credentials. Conditional Check (If Node): Determines if there are any open orders; branches accordingly: If orders exist, prepare an interactive Telegram message with a list of orders.1 If no orders exist, send a “No Order” message. Orders Code Node: Formats the list of open orders into a Telegram message with inline buttons. Each button corresponds to an order and sends a callback data containing the order ID. Get Order Details: When a user selects an order button, the workflow extracts the order ID from the callback data, fetches detailed order information from Shopify, and formats the order items into a readable message. Send Messages to Telegram: Sends formatted messages back to Telegram: The list of open orders with clickable buttons. Detailed information about a selected order. “No Order” notification if there are no open orders. How It Works A Telegram user sends /orders to the bot. The workflow fetches open orders from Shopify and sends a message with buttons listing each order. When a user clicks an order button, the workflow fetches and displays detailed information about that specific order in Telegram. If there are no open orders, the bot replies accordingly. Setup Instructions Create a Telegram Bot: Use @BotFather on Telegram to create a bot and get the bot token. Obtain Shopify API Credentials: Create a private app in your Shopify admin dashboard with permission to read orders. Obtain the API key and access token. Configure n8n Credentials: Add your Telegram bot token as Telegram API credentials in n8n. Add your Shopify API credentials in n8n Shopify credentials. Import the Workflow: Import this workflow into your n8n instance. Update the Telegram and Shopify credential nodes to use your credentials. Set Webhook URLs: Ensure your Telegram bot webhook is set correctly to receive messages. n8n webhook URLs should be publicly accessible. Test the Workflow: Send /orders to your Telegram bot to verify it retrieves and lists open orders. Customization Guidance Modify Commands: Update the Switch node to add more Telegram commands or change existing ones. Change Message Formats: Edit the Code nodes to customize how order lists and details appear. Expand Shopify Integration: Add nodes to handle other Shopify operations like updating orders, managing products, etc. Multi-User Support: Adapt the workflow to handle multiple Telegram chat IDs dynamically. Security and Implementation Notes The native Telegram node in n8n has limitations: it does not support sending dynamic inline keyboard arrays in JSON format, which is essential for displaying a variable number of buttons depending on how many orders are retrieved from Shopify. To overcome this, this workflow uses the HTTP Request node to call Telegram’s API directly, allowing full flexibility to send dynamic inline keyboards as JSON objects. (I will make an update once Telegram Node support dynamic inline keyboards). Security Considerations:** Always store your Telegram bot token securely in n8n credentials and never expose it in the HTTP Request node’s URL or body directly. Use environment variables or n8n credentials to inject tokens safely. Be mindful of Telegram API rate limits and add error handling in your workflow. While using HTTP Request nodes increases flexibility, it also requires careful management of request payloads and authentication, as opposed to the built-in Telegram node which abstracts much of this complexity. Benefits Quickly access Shopify order data without leaving Telegram. Interactive inline buttons improve user experience. Automated, real-time integration between Shopify and Telegram.
by Richard Uren
Create Products in Shopify from a Google Sheet This workflow creates products in your Shopify store from a google sheet. It also enables inventory tracking and sets the quantity of an inventory item at your store's default location. This is a great way to get test data into test or staging stores to try out apps, update templates or try out new designs. This Automation will only import new products. It will skip existing products if the slug matches an existing product's handle (Shopify's term for a slug). Setup Notes The Google Sheet has the following columns : title - free text description - free text company - free text category - free text status - ACTIVE, DRAFT or ARCHIVE slug - used in the product url, text with no spaces, can also use hyphen. price - sale price of the products compare_at_price - compare at price for products sku - unique code for each product stock_on_hand - quantity of this item available for purchase. Use those labels in the first row of your sheet and N8N will create one object per row with the column names as object fields. Update GraphQL nodes with your Shopify store URL 1) Replace the URL in all GraphQL nodes with the URL for your Shopify store. 2) These GraphQL requests all use the Shopify 2025-04 GraphQL Admin API.
by Don Jayamaha Jr
A short-term technical analysis agent for 15-minute candles on Binance Spot Market pairs. Calculates and interprets key trading indicators (RSI, MACD, BBANDS, ADX, SMA/EMA) and returns structured summaries, optimized for Telegram or downstream AI trading agents. This tool is designed to be triggered by another workflow (such as the Binance SM Financial Analyst Tool or Binance Quant AI Agent) and is not intended for standalone use. 🔧 Key Features ⏱️ Uses 15-minute kline data (last 100 candles) 📈 Calculates: RSI, MACD, Bollinger Bands, SMA/EMA, ADX 🧠 Interprets numeric data using GPT-4.1-mini 📤 Outputs concise, formatted analysis like: • RSI: 72 → Overbought • MACD: Cross Up • BB: Expanding • ADX: 34 → Strong Trend 🧠 AI Agent Purpose > You are a short-term analysis tool for spotting volatility, early breakouts, and scalping setups. Used by higher agents to determine: Entry/exit precision Momentum shifts Scalping opportunities ⚙️ How it Works Triggered externally by another workflow Accepts input: { "message": "BTCUSDT", "sessionId": "123456789" } Sends POST request to backend endpoint: https://treasurium.app.n8n.cloud/webhook/15m-indicators Fetches last 100 candles and calculates indicators Passes data to GPT for interpretation Returns summary with indicator tags for human readability 🔗 Dependencies This tool is triggered by: ✅ Binance SM Financial Analyst Tool ✅ Binance Spot Market Quant AI Agent 🚀 Setup Instructions Import into your n8n instance Make sure /15m-indicators webhook is active and calculates indicators correctly Connect your OpenAI GPT-4.1-mini credentials Trigger from upstream agent with Binance symbol and session ID Ensure all external calls (to Binance + webhook) are working 🧪 Example Use Cases | Use Case | Result | | ------------------------------------- | --------------------------------------- | | Short-term trade decision for ETHUSDT | Receives 15m signal indicators summary | | Input from Financial Analyst Tool | Returns real-time volatility snapshot | | Telegram bot asks for “DOGE update” | Returns momentum indicators in 15m view | 🎥 Watch Tutorial: 🧾 Licensing & Attribution © 2025 Treasurium Capital Limited Company Architecture, prompts, and trade report structure are IP-protected. No unauthorized rebranding or resale permitted. 🔗 For support: Don Jayamaha – LinkedIn
by Don Jayamaha Jr
A medium-term trend analyzer for the Binance Spot Market that leverages core technical indicators across 4-hour candle data to provide human-readable swing-trade signals via AI. 🎥 Watch Tutorial: 🎯 What It Does Accepts a Binance trading pair (e.g., AVAXUSDT) Sends the symbol to an internal webhook for technical indicator calculation Computes 4h RSI, MACD, Bollinger Bands, SMA, EMA, ADX Returns structured, GPT-analyzed signals ready for Telegram delivery 🧠 AI Agent Details Model:** GPT-4.1-mini (OpenAI Chat) Agent Role:** Translates raw indicator values into sentiment-labeled signals Memory:** Tracks session + symbol context for cleaner multi-turn logic 🔗 Required Backend Workflow To calculate indicators, this tool depends on: POST https://treasurium.app.n8n.cloud/webhook/4h-indicators { "symbol": "AVAXUSDT" } Returns a JSON object with the latest 40×4h candle-based calculations. 📥 Input Format { "message": "AVAXUSDT", "sessionId": "telegram_chat_id" } 📊 Sample Output 🕓 4h Technical Signals – AVAXUSDT • RSI: 64 → Slightly Bullish • MACD: Bullish Cross above baseline • BB: Upper band touch – volatility expanding • EMA > SMA → Confirmed Upside Momentum • ADX: 31 → Strengthening Trend 📚 Use Case Scenarios | Use Case | Result | | ----------------------------- | ---------------------------------------------------- | | Swing trend confirmation | Uses 4h indicators to validate or reject setups | | Breakout signal confluence | Helps assess if momentum is real or noise | | Inputs to Quant AI or Analyst | Supports higher-frame trade recommendation synthesis | 🛠️ Setup Instructions Import the JSON template into your n8n workspace. Set your OpenAI API credentials for the GPT node. Ensure the /webhook/4h-indicators backend tool is live and accessible. Connect this to your Binance Financial Analyst Tool or master Quant AI orchestrator. 🤖 Parent Workflows That Use This Tool Binance SM Financial Analyst Tool Binance Spot Market Quant AI Agent 📎 Sticky Notes & Annotations This workflow includes internal sticky notes describing: Node roles (GPT, webhook, memory) System behavior (reasoning agent logic) Telegram formatting guidance 🔐 Licensing & Attribution © 2025 Treasurium Capital Limited Company All architecture, prompt logic, and signal formatting are proprietary. Redistribution or rebranding is prohibited. 🔗 Connect with the creator: Don Jayamaha – LinkedIn
by InfraNodus
Set up a chat with your documents without the complex vector store setup. This templates helps you ingest** your PDF / text / MD documents into a knowledge graph use the graph as the knowledge base for your AI chatbots (and other workflows) visualize the main topics* and *gaps** in your documents (good for observability and research) The knowledge base is provided using the InfraNodus GraphRAG with the knowledge graphs offering high-quality responses without the need to set up complex RAG vector store workflows. The advantages of using GraphRAG instead of the standard vector stores for knowledge are: Easy and quick to set up and update** — no complex data import workflows needed A knowledge graph offers a holistic and interactive view of your knowledge base (accessible via our API or a web interface — also shareable) Better retrieval of relations** between the document chunks = higher quality responses How it works This template uses the InfraNodus knowledge graph as a knowledge base for your n8n AI agent node. The knowledge graph contains the documents you can upload using this template from your Google Drive. When the user asks a question via the chat interface, the agent forwards this question to the InfraNodus knowledge graph, retrieves a response, a summary, and a list of matching statements (based advanced Graph RAG), then delivers the final response back the user. Here's a description step by step: Step 1: Upload your documents Put the PDF / text / MD files you want to chat with into a folder on your Google drive Authorize access to that folder using the Google drive node in the template. Add the InfraNodus API key to the InfraNodus Save to Graph HTTP node Optional: change the name of the graph you want to save the data to in the InfraNodus HTTP node (in the name field of the HTTP post request). Run the workflow to ingest all the files and save them into the graph Optional: check the link provided in the Step 1 workflow description to see the visualization of your knowledge base. It will look something like that: Note:* you can replace the PDF to Text convertor node with a better quality *PDF convertor* from ConvertAPI which respects the original file layout and doesn't split text into small chunks Step 2: Chat with your documents Deactive the trigger in the Step 1 Activate the chat trigger in the Step 2 Add your InfraNodus API credentials to Knowledge Base GraphRAG InfraNodus node Optional: change the graph name in the Knowledge Base node to match the name you provided in the step 1 above Run the chat and ask the question Watch the magic How to use You need an InfraNodus GraphRAG API account and key to use this workflow. Create an InfraNodus account Get the API key at https://infranodus.com/api-access and create a Bearer authorization key for the InfraNodus HTTP nodes. Requirements An InfraNodus account and API key An OpenAI (or any other LLM) API key A Google Drive OAuth access (follow the n8n instructions) Optional: ConvertAPI API key for better quality PDF conversion Customizing this workflow You can customize this workflow by adding several experts to your AI agent. Check out the complete guide at https://support.noduslabs.com/hc/en-us/articles/20174217658396-Using-InfraNodus-Knowledge-Graphs-as-Experts-for-AI-Chatbot-Agents-in-n8n Also check out the video tutorial with a demo: For support and feedback, please, contact us at https://support.noduslabs.com To learn more about InfraNodus: https://infranodus.com
by Niklas Hatje
Who this is for This template is for everyone that wants to download their n8n Cloud invoices automatically as a PDF instead of downloading them manually. How it works This workflow checks your Gmail inbox for new n8n invoice emails from n8n's payment provider Paddle. Once it finds something, it converts the URL into a PDF using pdflayer and saves it in Google Drive. Setup Setup your Gmail and Google Drive credentials Create a free account at https://pdflayer.com/ Insert your pdflayer API key into the Setup node Insert the URL to the wanted drive folder into the setup node (make sure to remove everything after the ?) How to adjust it to your need Instead of saving the PDF in Google drive, you could also save it in your local system, any other storage provider or send the PDF automatically to the right person in your company.
by Inga Kruger
GBP Exchange Rate Email Workflow Sends email with table that have GBP exchange rate for few money value every day, if user clicks the button to run it. How it works: Data come from API Changed into HTML table Before is send inside email
by Aymeric Besset
> 🛠️ Note: This workflow uses a custom Mastodon API request. Ensure your server supports bookmark access, and that your access token has the right permissions. OAuth or token-based credentials must be configured. 🧑💼 Who is this for? This workflow is ideal for digital researchers, social media users, and knowledge workers who want to automatically archive Mastodon bookmarks into their Raindrop.io collection for future reference and tagging. 🔧 What problem is this solving? Mastodon users often bookmark posts they want to read or save for later, but there's no native integration to archive them outside the app. This workflow solves that by syncing bookmarked posts from Mastodon to Raindrop, making them more accessible, organized, and searchable long-term. ⚙️ What this workflow does Triggers on schedule (or manually). Tracks the latest fetched min_id using workflow static data to avoid duplicates. Sends an HTTP GET request to the Mastodon bookmarks API, using bearer token authentication. Validates and processes the bookmarks if new entries exist. Parses pagination metadata (e.g. min_id) from response headers. Splits response array to handle individual bookmarks. Filters out entries with missing data. Saves each post to Raindrop.io, using its title and URL. Use the card URL if exist. Updates the min_id to remember where it left off. 🚀 Setup Create a Mastodon access token with access to bookmarks. Add a credential in n8n of type HTTP Bearer Auth with your token. Create and connect a Raindrop OAuth2 credential. Replace {VOTRE SERVEUR MASTODON} with your Mastodon server's base URL. (Optional) Adjust the scheduling interval under the "Schedule Trigger" node. Make sure the Raindrop collection ID is correct or leave it as default (-1) as this is the index for the `Unsorted` collection. 🧪 How to customize this workflow To save to a specific Raindrop collection, change the collectionId in both Raindrop nodes. You can extend the Code node to pull additional metadata like author, hashtags, or content excerpts. Add an Email or Slack node after Raindrop to notify you of saved bookmarks.
by Ranjan Dailata
Notice Community nodes can only be installed on self-hosted instances of n8n. Who this is for? The Search Engine Intelligence Extractor is a powerful n8n automation that leverages Bright Data’s MCP based AI Agents to simulate human-like searches across Google, Bing, and Yandex, and then distills clean, structured insights using Google Gemini. This workflow is tailored for: SEO analysts researching competitors or market trends Market researchers needing real-time search visibility Journalists & content writers gathering contextual insights AI developers creating intelligent assistants Digital marketers tracking brand mentions or news What problem is this workflow solving? Traditional scraping of search engines is often blocked, cluttered, or filled with irrelevant information. Manually analyzing and cleaning this data for insight is time-consuming. This workflow solves the problem by: Simulating real user search behavior via Bright Data MCP based AI Agent Performing multi-platform search (Google, Bing, Yandex) in one unified flow Extracting clean, human-readable results (stripping ads, navigation, etc.) Structuring the content using Google Gemini LLM Automating delivery via Webhook or saving to disk What this workflow does Input Fields Node: Accepts the search query Accepts action for example - Perform a google search. Replace the action with bing, yandex etc. for other search providers Accepts Webhook notification URL Bright Data MCP Agent Execution: Triggers Bright Data’s intelligent search agent Handles search navigation, result loading, pagination Human Readable Data Extractor: Cleanses HTML, removes ads, footers, irrelevant links Produces a readable narrative of results Final Output Handling: Saves the processed response to disk Sends the structured data to a Webhook for real-time use Pre-conditions Knowledge of Model Context Protocol (MCP) is highly essential. Please read this blog post - model-context-protocol You need to have the Bright Data account and do the necessary setup as mentioned in the Setup section below. You need to have the Google Gemini API Key. Visit Google AI Studio You need to install the Bright Data MCP Server @brightdata/mcp You need to install the n8n-nodes-mcp Setup Please make sure to setup n8n locally with MCP Servers by navigating to n8n-nodes-mcp Please make sure to install the Bright Data MCP Server @brightdata/mcp on your local machine. Sign up at Bright Data. Create a Web Unlocker proxy zone called mcp_unlocker on Bright Data control panel. Navigate to Proxies & Scraping and create a new Web Unlocker zone by selecting Web Unlocker API under Scraping Solutions. In n8n, configure the Google Gemini(PaLM) Api account with the Google Gemini API key (or access through Vertex AI or proxy). In n8n, configure the credentials to connect with MCP Client (STDIO) account with the Bright Data MCP Server as shown below. Make sure to copy the Bright Data API_TOKEN within the Environments textbox above as API_TOKEN=<your-token> How to customize this workflow to your needs Add Scheduled Execution Add a Cron trigger to run this workflow on a set schedule (e.g., daily/weekly keyword tracking). Push Results to Custom Destinations Connect output to: Google Sheets (for analytics or dashboards) PostgreSQL or MySQL DBs (for structured storage) Notion or Airtable (for content pipelines) Slack or Email (for alerting teams) Customize Webhook Notifications Update the Webhook URL in the notification node to push processed results to external APIs, CRMs, or real-time dashboards.
by Ranjan Dailata
Notice Community nodes can only be installed on self-hosted instances of n8n. Who this is for? This workflow template enables intelligent data extraction from ProductHunt using Bright Data’s Model Context Protocol (MCP) and processes search results with Google Gemini. This workflow is designed for individuals and teams who need automated, intelligent discovery and analysis of new tech products. It's especially valuable for: Startup Analysts & VC Researchers Growth Hackers & Marketers Recruiters & Tech Scouts Product Managers & Innovation Teams AI & Automation Enthusiasts What problem is this workflow solving? Traditional product discovery on ProductHunt is constrained by limited descriptions and requires repeated manual validation through web searches. Manually extracting and enriching this data is slow, repetitive, and error-prone. This workflow solves the problem by: Extracting real-time ProductHunt data using Bright Data’s MCP infrastructure to mimic real-user behavior and avoid blocks. Performing contextual searches on Google for a specific product on ProductHunt to gather use cases, reviews, and related information. Structuring results using Google Gemini LLM to provide human-readable insights and reduce noise. Delivering results seamlessly by saving output to disk, updating Google Sheets, and sending Webhook alerts. What this workflow does Input Field Node Define the ProductHunt category with the search term(s) you want to target. This is used to drive extraction and search operations. Agent Operation Node The agent performs two major tasks: Extract from ProductHunt Retrieves trending products from ProductHunt using Bright Data MCP Contextual Google Search for the product the agent searches Google for deeper context, including: Reviews Competitor mentions Real-world usage examples LLM Node (Google Gemini) Analyzes and summarizes extracted web content Removes noise (ads, menus, etc.) Structures content into bullet points, insights, or JSON objects Pre-conditions Knowledge of Model Context Protocol (MCP) is highly essential. Please read this blog post - model-context-protocol You need to have the Bright Data account and do the necessary setup as mentioned in the Setup section below. You need to have the Google Gemini API Key. Visit Google AI Studio You need to install the Bright Data MCP Server @brightdata/mcp You need to install the n8n-nodes-mcp Setup Please make sure to setup n8n locally with MCP Servers by navigating to n8n-nodes-mcp Please make sure to install the Bright Data MCP Server @brightdata/mcp on your local machine. Sign up at Bright Data. Create a Web Unlocker proxy zone called mcp_unlocker on Bright Data control panel. Navigate to Proxies & Scraping and create a new Web Unlocker zone by selecting Web Unlocker API under Scraping Solutions. In n8n, configure the Google Gemini(PaLM) Api account with the Google Gemini API key (or access through Vertex AI or proxy). In n8n, configure the credentials to connect with MCP Client (STDIO) account with the Bright Data MCP Server as shown below. Make sure to copy the Bright Data API_TOKEN within the Environments textbox above as API_TOKEN=<your-token> How to customize this workflow to your needs This workflow is flexible and modular, allowing you to adapt it for various research, product discovery, or trend analysis use cases. Below are the key customization points and how to modify them. Define Your Target Products or Topics: Change the input parameter to a specific ProductHunt category, tag, or keyword (e.g., "AI tools", "SaaS", "DevOps") Change Output Destinations : Save to Disk**: Change the file format (.json, .csv, .md) or directory path Google Sheet**: Modify sheet name, structure (columns like Product, Summary, Link) Webhook Notification**: Point to a Slack/Discord/CRM/Webhook URL with payload mapping
by Vijayeta Sinel
Automate document translation and ensure translation accuracy using Straker Verify, Google Drive and Slack. **How it works? ** A workflow step is set up to "watch" a Google Drive folder. When your team members place new files in this folder, they are downloaded. Straker Verify then translates them and provides a quality score. Once Straker Verify has completed this, the job info is fetched, the translation is saved to an output folder and you are notified via Slack. What problem does this solve? When using AI to translate documents, you have no idea about the quality and accuracy of the output. This template answers the question “How good is my translation?” so you have a high level of confidence before you publish. Who is this for? This workflow template is designed for businesses needing translation and localization of documents such as text docs, presentations, web pages, transcripts, video subtitles and others. Use it to build workflows that localize your content at scale while maintaining translation quality, accuracy and compliance. Set up instructions Straker Verify Integration with n8n **Connect to Straker Verify: Obtain Your API Key Sign Up/Log In:** Visit https://verify.straker.ai/ to create an account or log in. Navigate to API Keys: Go to `Verify → Settings → API Keys. Copy Your Key: Find and copy your API key. Add Key to n8n: In n8n, go to Settings → Credentials → Straker Verify. Set Up Credentials for the Straker Verify Node Open n8n and go to "Credentials". From the left sidebar, click on "Credentials". Search for "Straker Verify" and select "Straker Verify API" from the dropdown. Paste the copied access token from the Verify app and save it. Assign Credentials to the Node 1.Go to your workflow and open the Straker Verify node. 2.Select the "Straker Verify API" credentials you just created from the dropdown (Credentials to connect with), and save. ✅ You are now ready to use the workflow. Workflow Steps Step 1: Initiate Workflow – Upload Files to Google Drive 1.Upload one or more files to the designated Google Drive folder. This triggers the "New File in Google Drive" node in n8n. Step 2: Verify Token Balance The workflow checks your token balance via: Get Current User Balance User Has Enough Tokens Not enough tokens? You will receive a Slack message: Not enough tokens Please top up and re-upload your files. Step 3: Select Workflow The system fetches available workflows via: Fetch All Users Workflows No matching workflow found? You'll be notified via Slack: No workflow found Step 4: Create Project in Straker Verify The following steps are handled automatically: Fetch language/project options Download files from Google Drive Create a new project using: Create Straker Project ✅ You'll receive a Slack confirmation: > "Project created – ID: xxxxxx" Step 5: Process Completion & File Return Once files are processed by Straker: The Incoming Translation Result webhook is triggered. The workflow: Downloads processed files: Get File Content from Strakerh - Uploads them to Google Drive: Upload File to Google Drivee Step 6: Confirmation - Workflow Complete You'll receive a final Slack message: > "Workflow complete – Files are now available in Google Drive"