by AlQaisi
Example: @SubAlertMe_Bot Summary: The automated image analysis and response workflow using n8n is a sophisticated solution designed to streamline the process of analyzing images sent via Telegram and delivering insightful responses based on the analysis outcomes. This cutting-edge workflow employs a series of meticulously orchestrated nodes to ensure seamless automation and efficiency in image processing tasks. Use Cases: This advanced workflow caters to a myriad of scenarios where real-time image analysis and response mechanisms are paramount. The use cases include: Providing immediate feedback on images shared within Telegram groups. Enabling automated content moderation based on the analysis of image content. Facilitating rapid categorization and tagging of images based on the results of the analysis. Detailed Workflow Setup: To effectively implement this workflow, users must adhere to a meticulous setup process, which includes: Access to the versatile n8n platform, ensuring seamless workflow orchestration. Integration of a Telegram account to facilitate image reception and communication. Utilization of an OpenAI account for sophisticated image analysis capabilities. Configuration of Telegram and OpenAI credentials within the n8n environment for seamless integration. Proficiency in creating and interconnecting nodes within the n8n workflow for optimal functionality. Detailed Node Description: Get the Image (Telegram Trigger): Actively triggers upon receipt of an image via Telegram, ensuring prompt processing. Extracts essential information from the received image message to initiate further actions. Merge all fields To get data from trigger: Seamlessly amalgamates all relevant data fields extracted from the trigger node for comprehensive data consolidation. Analyze Image (OpenAI): Harnesses the powerful capabilities of OpenAI services to conduct in-depth analysis of the received image. Processes the image data in base64 format to derive meaningful insights from the visual content. Aggregate all fields: Compiles and consolidates all data items for subsequent processing and analysis, ensuring comprehensive data aggregation. Send Content for the Analyzed Image (Telegram): Transmits the analyzed content back to the Telegram chat interface for seamless communication. Delivers the analyzed information in textual format, enhancing user understanding and interaction. Switch Node: The Switch node is pivotal for decision-making based on predefined conditions within the workflow. It evaluates incoming data to determine the existence or absence of specific elements, such as images in this context. Utilizes a set of rules to assess the presence of image data in the message payload and distinguishes between cases where images are detected and when they are not. This crucial node plays a pivotal role in directing the flow of the workflow based on the outcomes of its evaluations. Conclusion: The automation of image analysis processes through this sophisticated workflow not only enhances operational efficiency but also revolutionizes communication dynamics within Telegram interactions. By incorporating this advanced workflow solution, users can optimize their image analysis workflows, bolster communication efficacy, and unlock new levels of automation in image processing tasks.
by Jimleuk
This n8n workflow shows how using multimodal LLMs with AI vision can tackle tricky image validation tasks which are near impossible to achieve with code and often impractical to be done by humans at scale. You may need image validation when users submitted photos or images are required to meet certain criteria before being accepted. A wine review website may require users only submit photos of wine with labels, a bank may require account holders to submit scanned documents for verification etc. In this demonstration, our scenario will be to analyse a set of portraits to verify if they meet the criteria for valid passport photos according to the UK government website (https://www.gov.uk/photos-for-passports). How it works Our set of portaits are jpg files downloaded from our Google Drive using the Google Drive node. Each image is resized using the Edit Image node to ensure a balance between resolution and processing speed. Using the Basic LLM node, we'll define a "user message" option with the type of binary (data). This will allow us to pass our portrait to the LLM as an input. With our prompt containing the criteria pulled off the passport photo requirements webpage, the LLM is able to validate the photo does or doesn't meet its criteria. A structured output parser is used to structure the LLM's response to a JSON object which has the "is_valid" boolean property. This can be useful to further extend the workflow. Requirements Google Gemini API key Google Drive account Customising this workflow Not using Gemini? n8n's LLM node works with any compatible multimodal LLM so feel free to swap Gemini out for OpenAI's GPT4o or Antrophic's Claude Sonnet. Don't need to validate portraits? Try other use cases such as document classification, security footage analysis, people tagging in photos and more.
by Jimleuk
This n8n workflow demonstrates how we can use Multimodal LLMs to parse and extract from PDF documents in n8n. In this particular scenario, we're passing a candidate's CV/resume to an AI which filters out unqualified applications. However, this sneaky candidate has added in hidden prompt to bypass our bot! Whatever will we do? No fret, using AI Vision is one approach to solve this problem... read on! How it works Our candidate's CV/Resume is a PDF downloaded via Google Drive for this demonstration. The PDF is then converted into an image PNG using a tool called Stirling PDF. Since the hidden prompt has a white font color, it is is invisible in the converted image. The image is then forwarded to a Basic LLM node to process using our multimodal model - in this example, we'll use Google's Gemini 1.5 Pro. In the Basic LLM node, we'll need to set a User Message with the type of Binary. This allows us to directly send the image file in our request. The LLM is now immune to the hidden prompt and its response is has expected. The example CV/Resume with hidden prompt can be found here: https://drive.google.com/file/d/1MORAdeev6cMcTJBV2EYALAwll8gCDRav/view?usp=sharing Requirements Google Gemini API Key. Alternatively, GPT4 will also work for this use-case. Stirling PDF or another service which can convert PDFs into images. Note for data privacy, this example uses a public API and it is recommended that you self-host and use a private instance of Stirling PDF instead. Customising the workflow Swap out the manual trigger for another trigger such as a webhook to integrate into your existing services. This example demonstrates a validation use-case ie. "does the candidate look qualified?". You can try additionally extracting data points instead such as years of experiences, previous companies etc.
by Juan Carlos Cavero Gracia
This workflow contains community nodes that are only compatible with the self-hosted version of n8n. Description This automation template is designed for content curators, marketers, and anyone looking to supercharge their content sharing strategy. It transforms any web article, blog post, or news link into a series of platform-specific social media posts, generated by AI. It also captures a live screenshot of the webpage to use as the post image, automating the entire process of publishing them across X (Twitter), LinkedIn, Threads, and Reddit. Note: The default example is configured to share n8n templates, but this workflow can promote any web page, article, or news story. Just change the URL! The upload-post node only works for self-hosted n8n instances, but you can use the standard http node for uploading the content* Who Is This For? Content Curators & Marketers:** Effortlessly share valuable industry news and articles with tailored messages and visuals for each audience. Social Media Managers:** Keep your social feeds consistently active with relevant, high-quality content without the manual overhead. Community Builders & Brand Evangelists:** Quickly disseminate product updates, tutorials, and blog posts to your community on all relevant platforms. Professionals & Thought Leaders:** Build your personal brand by easily sharing insightful articles with automated visuals, adding your unique perspective. What Problem Does This Workflow Solve? Sharing a single piece of content across multiple social platforms is tedious. You need to manually write unique posts, create visuals, and then publish everything. This workflow addresses these challenges by: Automating Content Creation:** Uses a powerful AI agent (Google Gemini) to read any URL and write compelling, unique posts for each social network. Generating Visuals Automatically:** Captures a high-quality screenshot of the source webpage to use as a visually appealing image in your posts, increasing engagement. Ensuring Platform-Specific Tone:** The AI is instructed to generate professional posts for LinkedIn, concise threads for X, conversational updates for Threads, and community-focused posts for Reddit. One-Click Distribution:** Takes a single URL as input and handles the entire content creation and sharing process across multiple platforms automatically. How It Works Input a URL: In the "Set Input Data" node, simply paste the URL of the article or page you want to share. AI Analysis & Generation: The workflow sends the URL to the AI agent, which scrapes the content and generates four distinct, ready-to-publish posts. Screenshot Generation: At the same time, it uses the ScreenshotOne service to capture a high-quality image of the provided URL. Cross-Platform Publishing: The generated content and the screenshot are automatically sent to the corresponding nodes to be posted on X, LinkedIn, and Threads, while the text-only version is sent to Reddit. Setup AI Model Credentials: Add your Google Gemini API key to the Google Gemini Chat Model node to power the AI agent. Screenshot Service (ScreenshotOne): The workflow uses ScreenshotOne to generate images for your posts. Create a free account at screenshotone.com to get your own API key. The free plan includes 100 screenshots per month. In the Upload Post X, Upload Post LinkedIn, and Upload Post Threads nodes, go to the Photos parameter (under Additional Fields) and replace the existing access_key in the URL with your own. Upload-Post Account: This workflow uses upload-post.com for multi-platform posting. Create a free account at upload-post.com to get your API Token and User ID. Add the credentials in the Upload Post X, Upload Post LinkedIn, and Upload Post Threads nodes. Reddit Credentials: Connect your Reddit account using OAuth2 in the Reddit node to enable posting. Customize the AI: (Optional) Edit the prompt in the Social Media Agent node to match your content. The default prompt is optimized for sharing n8n templates, but you can easily adapt it for any topic to fit your brand's voice and style. Requirements Accounts:** n8n, Google (for Gemini API), ScreenshotOne, upload-post.com, Reddit. API Keys & Credentials:** Google Gemini API Key, ScreenshotOne API Key, Upload-post.com API Token & User ID, Reddit OAuth2 credentials. Use this template to become a content-sharing powerhouse, saving hours of work while increasing your reach and engagement across the web.
by Yaron Been
🚀 Automated Funding Intelligence: CrunchBase to Google Sheets Tracking Workflow! Workflow Overview This cutting-edge n8n automation is a sophisticated startup funding intelligence tool designed to transform market research into actionable insights. By intelligently connecting CrunchBase, data processing, and Google Sheets, this workflow: Discovers Funding Opportunities: Automatically retrieves latest funding rounds Tracks industry-specific investments Eliminates manual market research efforts Intelligent Data Processing: Filters funding data by location and industry Extracts key investment metrics Ensures comprehensive market intelligence Seamless Data Logging: Automatically updates Google Sheets Creates real-time investment database Enables rapid market trend analysis Scheduled Intelligence Gathering: Daily automated tracking Consistent market insight updates Zero manual intervention required Key Benefits 🤖 Full Automation: Zero-touch funding research 💡 Smart Filtering: Targeted investment insights 📊 Comprehensive Tracking: Detailed funding intelligence 🌐 Multi-Source Synchronization: Seamless data flow Workflow Architecture 🔹 Stage 1: Funding Discovery Scheduled Trigger**: Daily market scanning CrunchBase API Integration** Intelligent Filtering**: Location-based selection Industry-specific focus Most recent funding rounds 🔹 Stage 2: Data Extraction Comprehensive Metadata Parsing** Key Information Retrieval** Structured Data Preparation** 🔹 Stage 3: Data Logging Google Sheets Integration** Automatic Row Appending** Real-Time Database Updates** Potential Use Cases Venture Capitalists**: Investment opportunity tracking Startup Scouts**: Market trend analysis Market Researchers**: Comprehensive funding insights Investors**: Strategic decision support Business Strategists**: Competitive landscape monitoring Setup Requirements CrunchBase API API credentials Configured access permissions Funding round tracking setup Google Sheets Connected Google account Prepared tracking spreadsheet Appropriate sharing settings n8n Installation Cloud or self-hosted instance Workflow configuration API credential management Future Enhancement Suggestions 🤖 Advanced investment trend analysis 📊 Multi-source funding aggregation 🔔 Customizable alert mechanisms 🌐 Expanded industry coverage 🧠 Machine learning insights generation Technical Considerations Implement robust error handling Use secure API authentication Maintain flexible data processing Ensure compliance with API usage guidelines Ethical Guidelines Respect business privacy Use data for legitimate research Maintain transparent information gathering Provide proper attribution Hashtag Performance Boost 🚀 #StartupFunding #InvestmentIntelligence #MarketResearch #AIWorkflow #DataAutomation #VentureCapital #TechInnovation #InvestmentTracking #BusinessIntelligence #StartupEcosystem Workflow Visualization [Daily Trigger] ⬇️ [Fetch Funding Rounds] ⬇️ [Extract & Format Data] ⬇️ [Log to Google Sheets] Connect With Me Ready to revolutionize your funding intelligence? 📧 Email: Yaron@nofluff.online 🎥 YouTube: @YaronBeen 💼 LinkedIn: Yaron Been Transform your market research with intelligent, automated workflows!
by Yar Malik (Asfandyar)
How it works Trigger: Listens for an incoming chat message Copy Assistant: Feeds the message (plus memory) into an OpenAI Chat Model and exposes two “tools” Cold Email Writer Tool Sales Letter Tool• Tool execution: Depending on the user’s intent, the appropriate tool generates the copy • Save output: Writes the generated email or sales letter into your target document via the Update a document node Set up steps • Configure your OpenAI Chat Model credentials in n8n (no hard-coded keys!) • Add and authenticate the Simple Memory credential (to keep context across messages) • Create Google Docs (or MS Word) credentials for the Update a document node • Ensure your Chat trigger is pointing at your incoming-message endpoint • Mandatory: Drop sticky-note annotations on each tool node explaining where to enter API keys and how to tweak prompts Once everything’s wired up, send a test chat message like “Write me a cold email for a fintech startup” and watch the workflow spin up a polished draft in your document. How to use Import the workflow JSON into n8n. Configure your Chat trigger (webhook or form) to receive incoming messages. Send a chat prompt like: “Write me a cold email for a B2B SaaS offering.” The “Copy Assistant” custom GPT picks the right tool (Cold Email or Sales Letter). Generated copy is written directly into your linked Google Doc or Word document. Requirements OpenAI API Key (with Chat Completions & Custom GPTs enabled) Custom Assistant created in your ChatGPT dashboard (Assistant ID pasted into the Chat Model node) n8n instance (Cloud or self-hosted) with credentials set up for: Simple Memory (to persist context) Google Docs or Microsoft Word (for document output) Customising this workflow Tweak system and user prompts inside the Copy Assistant node to fit your brand voice. Swap in Slack, Teams or email nodes instead of a document writer to deliver copy where you need it. Add or remove tools (e.g., “Follow-up Email Writer”) by duplicating the existing tool pattern. Use sticky-note annotations on every node to explain where to enter API keys, Assistant IDs, or prompt tweaks.
by Aditya Gaur
Who is this template for? This template is for teams and administrators who use n8n to monitor Elastic alerts and want to receive automated email notifications when an alert is triggered. It leverages Microsoft Graph API to send emails and provides an efficient way to notify users about alerts directly in their inbox. How it works? The template connects to the Elastic API to retrieve alert data. When a new alert is detected, the workflow processes the alert content and sends an email notification via Microsoft Graph API. The email includes alert details such as the alert name, timestamp, severity, and a summary of the message, allowing for quick action or review. Setup steps Step 1: Set up OAuth2 Credentials in n8n for Microsoft Graph API with Mail.Send permission. Step 2: Configure your Elastic API endpoint in the HTTP Request node to retrieve alerts. Step 3: Modify the email recipients in the template to specify who will receive the alert notifications. Step 4: Customize the email format, if necessary, to include additional alert details or adjust the message.
by Praveena
Idea The idea for app came since I wanted to build a unique gift for my niece because she gets excited for her birthday (which Im going to miss this year). The web app has a simple countdown (in html and JS) but more importantly, there is an AI agent that will answer some specific questions and know her preferences. How it works The questions from app are sent via web hook to N8N which has pulls preferences file (about her likes, dislikes, personality) from postgre and AI Agent that will answer questions/respond. The current status is stored back in postgre (especially about status of cat and universe happenings) before responding back. Features Integrated AI chatbot via N8N webhook Persistent conversation history Minimizable chat interface Fallback support for offline testing Features: -- Wheres Mittens - This is a query to track her lost cat in multiverse. -- Multiverse updates with recent update stored Pre Requisites Postgre SQL database is available. Alternatively, use any other database but change the N8N nodes. LLM Api Key. Step by Step Instructions Export this N8N Workflow. Modify LLM API Key, I used openAI, 4.1 For web app scofflding,you will need Node, HTML and Javascript. I've created a mini version using Node and JS with web app and N8N connection settings here: <https://github.com/productiser/FiBirthdayAgent> PostgreSQL Database Script (1 table for memory and context storage): CREATE TABLE fifi_world_context ( id TEXT PRIMARY KEY, -- e.g., 'agent_fifi' cat_location TEXT, -- e.g., "Bubble Nebula" cat_activity TEXT, -- e.g., "Playing laser tag with moon mice" fifi_preferences JSONB, -- e.g., likes/dislikes/foods/shows world_history TEXT, -- Summary of narrative events last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP ); 5.Modify system prompt as per your needs. Built With N8N Self hosted Self hosted web app Hosted on Vercel Total spend = <£1 (AI costs only) Total Time = <1 day Support Watch this video for web app overview and how it looks. <https://youtu.be/e7PlrTdvwoM> Contact me on info@pankstr.com/ superllmuser@gmail.com for any queries Hope you enjoy!!
by Pavel Duchovny
Who is this for? This workflow is designed for: Database administrators and developers working with MongoDB Content managers handling movie databases Organizations looking to implement AI-powered search and recommendation systems Developers interested in combining LangChain, OpenAI, and MongoDB capabilities What problem does this workflow solve? Traditional database queries can be complex and require specific MongoDB syntax knowledge. This workflow addresses: The complexity of writing MongoDB aggregation pipelines The need for natural language interaction with movie databases The challenge of maintaining user preferences and favorites The gap between AI language models and database operations What this workflow does This workflow creates an intelligent agent that: Accepts natural language queries about movies Translates user requests into MongoDB aggregation pipelines Queries a movie database containing detailed information including: Plot summaries Genre classifications Cast and director information Runtime and release dates Ratings and awards Provides contextual responses using OpenAI's language model Allows users to save favorite movies to the database Maintains conversation context using a window buffer memory Setup Required Credentials: OpenAI API credentials MongoDB connection details Node Configuration: Configure the MongoDB connection in the MongoDBAggregate node Set up the OpenAI Chat Model with your API key Ensure the webhook trigger is properly configured for receiving chat messages Database Requirements: A MongoDB collection named "movies" with the specified document structure Proper indexes for efficient querying Appropriate user permissions for read/write operations How to customize this workflow Modify the Document Structure: Update the tool description in the MongoDBAggregate node to match your collection schema Adjust the aggregation pipeline templates for your specific use case Enhance the AI Agent: Customize the prompt in the "AI Agent - Movie Recommendation" node Modify the window buffer memory size based on your context needs Add additional tools for more functionality Extend Functionality: Add more MongoDB operations beyond aggregation Implement additional workflows for different types of queries Create custom error handling and validation Add user authentication and rate limiting Integration Options: Connect to external APIs for additional movie data Add webhook endpoints for different platforms Implement caching mechanisms for frequent queries Add data transformation nodes for specific output formats This workflow serves as a foundation that can be adapted to various use cases beyond movie recommendations, such as e-commerce product search, content management systems, or any scenario requiring intelligent database interaction.
by Mauricio Perera
Overview: This workflow is designed to handle user inputs via a webhook, process the inputs with the Google Gemini API (specifically the gemini-2.0-flash-thinking-exp-1219 model), and return a structured response to the user. The response includes three key elements: reasoning, the final answer, and citation URLs (if applicable). This workflow provides a robust solution for integrating AI reasoning into your processes. This workflow can be utilized as a tool for AI-based agents, intelligent email drafting systems, or as a standalone intelligent automation solution. Setup: Webhook Configuration: Ensure the webhook node is properly set up to accept GET requests with an input parameter. Verify that the webhook path matches your application requirements. Test the webhook using tools like Postman to ensure proper data formatting. Google Gemini API Credentials: Set up your Google Gemini API account credentials in the HTTP Request node. Ensure API access and permissions are valid. Parameter Adjustments: Customize the temperature, topK, topP, and maxOutputTokens parameters to fit your use case. Customization: Input Parameters: Modify the webhook path or parameters based on the data your application will send. Response Formatting: Adjust the JavaScript code in the "Process API Response" node to fit your desired output structure. Output Expectations: Test the response returned by the "Return Response to User" node to ensure it meets your application requirements. Workflow Steps: Receive User Input: Node Type: Webhook Purpose: Captures a GET request containing a user-provided input parameter. Acts as the starting point for the workflow. Send Request to Google Gemini: Node Type: HTTP Request Purpose: Sends the received input to the Gemini-2.0-flash-thinking-exp-1219 model for processing. The API configuration includes parameters for customizing the response. Process API Response: Node Type: Code Node Purpose: Extracts reasoning, the final answer, and citation URLs from the API response. Organizes the output for further use. Return Response to User: Node Type: Respond to Webhook Purpose: Sends the processed and structured response back to the user via the webhook. Ensures the response format meets expectations. Expected Outcomes: Input Handling:** Successfully captures user input via a webhook. AI Processing:* Generates a structured response using the *Gemini-2.0-flash-thinking-exp-1219** model, including reasoning, answers, and citations (if available). Output Delivery:** Returns a user-friendly response formatted to your specifications. Notes: The workflow is inactive by default. Each node is annotated with a Sticky Note to clarify its purpose. Ensure all API credentials are correctly configured before execution. Use this workflow to save time, improve accuracy, and automate repetitive tasks efficiently. Tags: Automation Google Gemini AI Agents Intelligent Automation Content Generation Workflow Integration
by Yaron Been
Transform raw customer feedback into powerful testimonial quotes automatically. This intelligent n8n workflow monitors feedback forms, uses AI to identify and extract the most emotionally engaging testimonial content, and organizes everything into a searchable database for your marketing campaigns. 🔄 How It Works This streamlined 4-step automation turns feedback into marketing assets: Step 1: Continuous Feedback Monitoring The workflow monitors your Google Sheets (connected to feedback forms) every minute, instantly detecting new customer submissions and triggering the extraction process. Step 2: Intelligent Quote Extraction Google Gemini AI analyzes each feedback submission using specialized prompts designed to: Identify emotionally engaging phrases and statements Extract short, impactful testimonial quotes from longer feedback Filter out neutral, irrelevant, or negative content Focus on marketing-ready, quotable customer experiences Preserve the authentic voice and emotion of the original feedback Step 3: Automated Database Population Extracted testimonials are automatically written back to your Google Sheets in a dedicated "Testimony" column, creating an organized, searchable database of customer quotes ready for marketing use. Step 4: Instant Team Notification Email alerts are sent immediately to your marketing team with each new extracted testimonial, ensuring no valuable social proof goes unnoticed or unused. ⚙️ Setup Steps Prerequisites Google Workspace account for Forms, Sheets, and Gmail Google Gemini API access for intelligent quote extraction n8n instance (cloud or self-hosted) Basic understanding of Google Forms and customer feedback collection Required Google Forms Structure Create a customer feedback form with these essential fields: 📝 Required Form Fields: Name (Short answer text) Email Address (Email field with validation) Feedback (Paragraph text - this is where testimonials are extracted from) Testimony (Leave blank - will be auto-populated by AI) Form Design Best Practices: Use open-ended questions to encourage detailed responses Ask specific questions about customer experience and outcomes Include questions about before/after results for powerful testimonials Make the feedback field prominent and easy to complete Configuration Steps 1. Credential Setup Google Sheets OAuth2**: Monitor feedback responses and update testimonial database Google Gemini API Key**: Extract intelligent, emotionally engaging quotes from feedback Gmail OAuth2**: Send automated notifications to marketing team Google Forms Integration**: Ensure seamless data flow from feedback forms 2. Google Sheets Configuration Verify your feedback response sheet contains proper column structure: | Timestamp | Name | Email | Feedback | Testimony | 3. AI Extraction Optimization The default prompt extracts impactful testimonials, but can be customized for: Industry-Specific Language**: Healthcare, technology, finance, retail terminology Quote Length Preferences**: Short punchy quotes vs longer detailed testimonials Emotional Tone Targeting**: Excitement, relief, satisfaction, transformation Content Focus**: Results-oriented, process-focused, or relationship-based testimonials 4. Notification Customization Email alerts can be configured for: Multiple Recipients**: Marketing team, sales team, customer success Custom Subject Lines**: Include customer name, product type, or urgency indicators Rich Content**: Include full feedback alongside extracted testimonial Categorization**: Different alerts for different product lines or service types 5. Quality Control Implementation Extraction Confidence**: Set minimum quality thresholds for extracted quotes Manual Review Process**: Flag testimonials for human review before publication Approval Workflows**: Add approval steps for high-value or sensitive testimonials Version Control**: Track original feedback alongside extracted quotes 🚀 Use Cases E-commerce & Retail Product Reviews**: Extract compelling quotes from detailed product feedback Customer Success Stories**: Identify transformation narratives from user experiences Social Proof Collection**: Build testimonial libraries for product pages and ads Review Mining**: Turn long reviews into short, shareable testimonial quotes SaaS & Technology Companies User Experience Feedback**: Extract quotes about software usability and impact ROI Testimonials**: Identify statements about business results and efficiency gains Feature Feedback**: Capture specific praise for product capabilities and benefits Customer Success Metrics**: Extract quantifiable results and outcome statements Professional Services Client Success Stories**: Transform project feedback into powerful case study quotes Service Quality Testimonials**: Extract praise for expertise, communication, and results Consulting Impact**: Identify statements about business transformation and growth Relationship Testimonials**: Capture quotes about trust, partnership, and collaboration Healthcare & Wellness Patient Experience**: Extract quotes about care quality and health outcomes Treatment Success**: Identify statements about symptom improvement and recovery Provider Relationships**: Capture testimonials about bedside manner and communication Wellness Journey**: Extract quotes about lifestyle changes and health transformations Education & Training Student Success Stories**: Extract quotes about learning outcomes and career impact Course Effectiveness**: Identify statements about skill development and knowledge gains Instructor Praise**: Capture testimonials about teaching quality and support Career Transformation**: Extract quotes about professional growth and opportunities 🔧 Advanced Customization Options Multi-Category Extraction Enhance extraction with specialized processing: Product-Specific: Extract testimonials for different product lines separately Service-Based: Customize extraction for various service offerings Demographic-Focused: Tailor extraction for different customer segments Journey-Stage: Extract testimonials for awareness, consideration, and retention phases Quality Enhancement Features Implement advanced quality control: Sentiment Scoring**: Rate extracted testimonials for emotional impact Authenticity Verification**: Cross-reference testimonials with customer records Duplicate Detection**: Prevent similar testimonials from the same customer Content Enrichment**: Add context and customer details to extracted quotes Marketing Integration Extensions Connect to marketing and sales tools: Social Media Publishing**: Auto-post testimonials to Facebook, LinkedIn, Twitter Website Integration**: Push testimonials to website testimonial sections Email Marketing**: Include fresh testimonials in newsletter campaigns Sales Enablement**: Provide sales team with relevant testimonials for prospects Analytics and Reporting Generate insights from testimonial data: Testimonial Performance**: Track which quotes generate most engagement Customer Satisfaction Trends**: Analyze testimonial sentiment over time Product/Service Insights**: Identify most praised features and benefits Competitive Advantages**: Extract testimonials highlighting differentiators 📊 Extraction Examples Before (Raw Feedback): "I was really struggling with managing my team's projects and keeping track of all the deadlines. Everything was scattered across different tools and I was spending way too much time just trying to figure out what everyone was working on. Since we started using your project management software about 6 months ago, it's been a complete game changer. Now I can see everything at a glance, our team communication has improved dramatically, and we're actually finishing projects ahead of schedule. The reporting features are amazing too - I can finally show my boss concrete data about our team's productivity. I honestly don't know how we managed without it. The customer support team has been fantastic as well, always quick to help when we had questions during setup." After (AI Extracted Testimonial): "Complete game changer - now I can see everything at a glance, our team communication has improved dramatically, and we're actually finishing projects ahead of schedule." Healthcare Example: Before (Raw Feedback): "I had been dealing with chronic back pain for over 3 years and had tried everything - physical therapy, medication, different doctors. Nothing seemed to help long-term. When I found Dr. Martinez, I was honestly pretty skeptical because I'd been disappointed so many times before. But after our first consultation, I felt hopeful for the first time in years. She really listened to me and explained everything clearly. The treatment plan she developed was comprehensive but manageable. Within just 2 months, I was experiencing significant pain reduction, and now after 6 months, I'm practically pain-free. I can play with my kids again, sleep through the night, and even started hiking on weekends. Dr. Martinez didn't just treat my symptoms - she helped me get my life back." After (AI Extracted Testimonial): "Within just 2 months, I was experiencing significant pain reduction, and now I'm practically pain-free. Dr. Martinez didn't just treat my symptoms - she helped me get my life back." 🛠️ Troubleshooting & Best Practices Common Issues & Solutions Low-Quality Extractions Improve Feedback Questions**: Ask more specific, outcome-focused questions Refine AI Prompts**: Adjust extraction criteria for better quote selection Set Minimum Length**: Ensure feedback has sufficient content for meaningful extraction Quality Scoring**: Implement rating system for extracted testimonials Insufficient Feedback Volume Multiple Feedback Channels**: Collect testimonials through various touchpoints Incentivized Feedback**: Offer small rewards for detailed feedback submissions Follow-up Automation**: Send feedback requests to satisfied customers Timing Optimization**: Request feedback at optimal moments in customer journey Privacy and Consent Issues Permission Management**: Ensure customers consent to testimonial use Attribution Control**: Allow customers to specify how they want to be credited Approval Workflows**: Implement customer approval before publishing testimonials Data Protection**: Maintain compliance with privacy regulations Optimization Strategies Extraction Quality Enhancement Prompt Engineering**: Continuously refine AI prompts based on output quality A/B Test Extractions**: Test different extraction approaches for effectiveness Human Review Integration**: Combine AI extraction with human editorial oversight Context Preservation**: Maintain customer context alongside extracted quotes Marketing Integration Campaign Alignment**: Extract testimonials that support specific marketing campaigns Audience Segmentation**: Categorize testimonials for different target audiences Channel Optimization**: Format testimonials for specific marketing channels Performance Tracking**: Monitor which testimonials drive best marketing results Process Automation Multi-Stage Processing**: Implement multiple extraction and refinement steps Quality Gates**: Add checkpoints for testimonial quality and relevance Workflow Branching**: Route different types of feedback to appropriate processes Error Handling**: Implement fallbacks for failed extractions or poor-quality feedback 📈 Success Metrics Extraction Efficiency Processing Speed**: Reduce time from feedback submission to usable testimonial Success Rate**: Percentage of feedback submissions yielding quality testimonials Quote Quality**: Average rating of extracted testimonials by marketing team Volume Increase**: Growth in testimonial collection and database size Marketing Impact Testimonial Usage**: Frequency of extracted testimonials in marketing campaigns Conversion Rates**: Impact of AI-extracted testimonials on sales metrics Social Proof Effectiveness**: Engagement rates on testimonial-based content Customer Acquisition**: Attribution of new customers to testimonial-driven campaigns 📞 Questions & Support Need help implementing your AI Testimonial Extractor Agent? 📧 Specialized Technical Support Email**: Yaron@nofluff.online Response Time**: Within 24 hours on business days Expertise**: AI testimonial extraction, feedback form optimization, marketing automation 🎥 Comprehensive Learning Library YouTube Channel**: https://www.youtube.com/@YaronBeen/videos Complete setup guides for feedback form design and AI extraction Advanced prompt engineering techniques for testimonial quality Integration tutorials for marketing platforms and social media Best practices for customer feedback collection and testimonial usage Troubleshooting common extraction and quality issues 🤝 Professional Marketing Community LinkedIn**: https://www.linkedin.com/in/yaronbeen/ Connect for ongoing testimonial marketing automation support Share your customer success story automation achievements Access exclusive templates for feedback forms and testimonial campaigns Join discussions about social proof marketing and customer experience automation 💬 Support Request Guidelines Include in your support message: Your industry and typical customer feedback patterns Current testimonial collection process and challenges Specific marketing channels where testimonials will be used Volume expectations and quality requirements Integration needs with existing marketing tools Ready to turn every customer feedback into marketing gold? Deploy this AI Testimonial Extractor Agent and build a powerful testimonial database that drives sales and builds trust with prospects automatically!
by WeblineIndia
Automate Telegram Chat Responses Using Google Gemini By WeblineIndia* ⚡ TL;DR (Quick Steps) Create a Telegram bot using @BotFather and copy the API Token. Obtain Google Gemini API Key via Google Cloud. Set up the n8n workflow: Trigger: Telegram message received. AI Model: Google Gemini generates response. Output: AI reply sent back to user via Telegram. Customize the system prompt, model, or message handling to suit your use case. 🧠 Description This n8n workflow enables seamless automation of real-time chat replies in Telegram by integrating with Google Gemini's Chat Model. Every time a user sends a message to your Telegram bot, the workflow routes it through the Gemini AI, which analyzes and crafts a professional response. This reply is then automatically delivered back to the user. The setup acts as a lightweight but powerful chatbot system — ideal for businesses, customer service, or even personal productivity bots. You can easily modify its tone, intelligence level, or logging mechanisms to cater to specific domains such as sales, tech support, or general Q&A. 🎯 Purpose of the Workflow The primary goal of this workflow is to automate intelligent, context-aware chat responses in Telegram using a robust AI model. It eliminates manual reply handling, enhances user engagement, and ensures 24/7 interaction capabilities — all through a no-code or low-code setup using n8n. 🛠️ Steps to Configure and Use ✅ Pre-Conditions / Requirements Telegram Bot Token**: Get it from @BotFather. Google Gemini API Key**: Available via Google Cloud PaLM/Gemini API access. n8n Instance**: Hosted or local instance with required nodes installed (Telegram, Basic LLM Chain, and Google Gemini support). 🔧 Setup Instructions Step 1: Telegram Trigger – Listen for Incoming Messages Add Telegram Trigger node. Select Trigger On: Message. Authenticate using your Telegram Bot Token. This will capture incoming messages from any user interacting with your bot. Step 2: Google Gemini AI – Generate a Smart Reply Add the Basic LLM Chain node. Connect the input message ({{$json.message.text}}) from the Telegram Trigger. System Prompt: > "You are an AI assistant. Reply to the following user message professionally:" Choose Google Gemini Chat Model (models/gemini-1.5-pro). Connect this node to receive the text input and pass it to Gemini for processing. Step 3: Telegram Reply – Send the AI Response Add a Telegram node (Operation: Send Message). Set Chat ID dynamically from the Telegram Trigger node. Input the generated message from the Gemini output. Enable Parse Mode as HTML for rich formatting. Final Step: Link All Nodes Receive Telegram Message → Generate AI Response → Send Telegram Reply. > Tip: Test the workflow by sending a message to your Telegram bot and ensure you receive an AI-generated reply. 🧩 Customization Guidance ✏️ Modify the AI tone by updating the system prompt. 🤖 Use other AI models (e.g., OpenAI GPT-4o). 🔍 Add filters to respond differently based on specific keywords. 📊 Extend the workflow to store chats in Google Sheets, Airtable, or databases for audit or analytics. 🌐 Multi-language support: Add translation layers before and after AI processing. 🛠️ Troubleshooting Guide No message received?** Check if your Telegram bot is active and webhook is working. AI not responding?** Validate your Google Gemini API key and usage quota. Wrong replies?** Refine the system prompt or validate message routing. Formatting issues?** Ensure Parse Mode is correctly set to HTML. 💡 Use Case Examples Customer Service Chatbot** for product queries. Educational Bots** for answering user questions on a topic. Mental Health Companion** that gives supportive replies. Event-based Announcers** or automatic responders during off-hours. > And many more! This workflow can be easily extended to support advanced use cases with just a few additional nodes. 👨💻 About the Creator This workflow is developed by WeblineIndia, a trusted provider of AI development services and process automation solutions. If you're looking to build or customize intelligent workflows like this, we invite you to get in touch with our team. We also offer specialized Python development and AI developer hiring services to supercharge your automation needs.