by Yang
Who is this for? This template is designed for content creators, marketing teams, educators, or media managers who want to repurpose video content into written blog posts with visuals. It's ideal for anyone looking to automate the process of transforming YouTube videos into professional blog articles and custom images. What problem is this workflow solving? Creating written content from video material is time-consuming and manual. This workflow solves that by automating the entire pipeline: from detecting new YouTube video uploads to transcribing the audio, turning it into an engaging blog post, generating a matching visual, and saving both in Airtable. It saves hours of work while keeping your blog or social feed active and consistent. What this workflow does This automation listens for new YouTube videos added to a Google Drive folder, extracts the full transcript using Dumpling AI, and sends it to GPT-4o to generate a blog post and image prompt. Dumpling AI then turns the prompt into a 16:9 visual. The blog and visual are saved into Airtable for easy publishing or curation. Setup Google Drive Trigger Create a folder in Google Drive and upload your YouTube videos there. Link this folder in the "Watch Folder for New YouTube Videos" node. Enable polling every minute or adjust as needed. Download & Prepare the Video The video is downloaded and converted into base64 format by the next two nodes: Download Video File and Convert Downloaded Video to Base64. Transcription with Dumpling AI The base64 video is sent to Dumpling AI’s extract-video endpoint. You must have a Dumpling AI account and an API key with access to this endpoint: Dumpling AI Docs Generate Blog Content with GPT-4o GPT-4o takes the transcript and generates: A human-like blog post A descriptive prompt for AI image generation Make sure your OpenAI credentials are configured. Generate the Visual The prompt is passed to Dumpling AI’s generate-ai-image endpoint using model FLUX.1-pro. The result is a clean 1024x576 image. Save to Airtable Blog content is stored under the Content field in Airtable. The image prompt is also added to the Attachments column as a visual reference. Ensure Airtable base and table are preconfigured with the correct field names. How to customize this workflow to your needs Change the GPT prompt to alter the tone or format of the blog post (e.g., add bullet points or SEO tags). Modify the Dumpling AI prompt to generate different image styles. Add a scheduler or webhook trigger to run at different intervals or through other integrations. Connect this output to Ghost, Notion, or your CMS using additional nodes. 🧠 Sticky Note Summary Part 1: Transcription & Blog Prompt Watches a Google Drive folder for new video uploads. Downloads and encodes the video. Transcribes full audio with Dumpling AI. GPT-4o writes a blog post and descriptive image prompt. Part 2: Image Generation & Airtable Save Dumpling AI generates a visual from the image prompt. Blog content is saved to Airtable. The image prompt is patched into the Attachments field in the same record. ✅ Use this if you want to automate repurposing YouTube videos into blog content with zero manual work.
by Robert Breen
n8n Workflow: OpenAI DALL·E 2 Image Generation & Google Drive Upload Description This n8n workflow automates the process of generating multiple AI-created images from a single prompt using OpenAI's DALL·E 2, then uploads the results directly to a Google Drive folder. It includes a loop to produce several image variations for the same prompt, making it ideal for creative projects, marketing materials, or content experimentation. Step-by-Step Setup Instructions 1. Prepare Your API Keys OpenAI API Key** Sign up or log in at https://platform.openai.com/ Go to API Keys and create a new one. Copy and store this securely — you'll need it in n8n. Google Drive API** Go to https://console.cloud.google.com/ Create a project and enable Google Drive API. Create OAuth 2.0 credentials and set the redirect URI to your n8n OAuth redirect (found in your n8n Google Drive node setup). Connect your Google account when adding credentials in n8n. 2. Workflow Nodes Overview Manual Trigger – Starts the workflow manually. Set Image Prompt – Stores the prompt text and base file name (e.g., “Make an image of an attractive woman standing in New York City”). Duplicate Rows (Code Node) – Creates multiple "runs" of the same prompt for variation. Loop Over Items – Processes each variation one at a time. Generate an image (OpenAI DALL·E 2) – Sends the prompt to OpenAI and retrieves an image. Upload to Google Drive – Saves each generated image to your chosen Google Drive folder. 3. Building the Workflow in n8n Step 1 — Manual Trigger Add a Manual Trigger node to start the workflow manually when testing. Step 2 — Set Image Prompt Add a Set node with two fields: Prompt → The image description text. Name → The base name for the saved file. Example: | Name | Value | |--------|---------------------------------------------------------------| | Prompt | Make an image of an attractive woman standing in New York City | | Name | woman-nyc | Step 3 — Duplicate Rows (Code Node) Use this JavaScript to create three copies of the prompt (run 1, run 2, run 3): const original = items[0].json; return [ { json: { ...original, run: 1 } }, { json: { ...original, run: 2 } }, { json: { ...original, run: 3 } }, ]; Step 4 — Loop Over Items Insert a Split in Batches node and set the batch size to 1. This ensures each prompt variation runs through the image generation process individually. Connect this node so it runs after the Duplicate Rows node. Step 5 — Generate Image Add the OpenAI Image Generation node and configure it as follows: Model**: dall-e-2 Prompt**: ={{ $json.Prompt }} Leave other options at their defaults unless you want to specify image size or style. Connect your OpenAI API credentials created in Step 1. This node will send the current prompt in the batch to OpenAI's DALL·E 2 model and return an AI-generated image. Step 6 — Upload to Google Drive Add a Google Drive node and configure it to store the generated image: File Name**: ={{ $('Set Image Prompt').item.json.Name }} - {{ $('Duplicate Rows').item.json.run }} Folder ID**: Select the target Google Drive folder where images should be saved. Connect your Google Drive OAuth2 API credentials. The node will upload each generated image to your chosen Google Drive location, with a unique filename for each variation. Running the Workflow Execute the workflow manually. The process will: Loop through each prompt variation. Generate an image using OpenAI DALL·E 2. Upload the image to Google Drive with a unique name. You will find all generated images in the selected Google Drive folder. Customization Tips Change the number of variations by editing the Duplicate Rows code. Adjust the prompt dynamically from other data sources like Google Sheets, webhooks, or forms. Schedule the workflow to run at specific times or trigger it via an API call. Created by Robert A. – Ynteractive Website: https://ynteractive.com Email: robert@ynteractive.com
by Niranjan G
Who is this for? NVD (National Vulnerability Database) data is essential for security analysts, vulnerability managers, and DevSecOps professionals who need to perform both CVE lookups and monitor historical change logs. This workflow helps streamline those efforts by providing structured outputs for audit, triage, or compliance tracking purposes. 📝 Note: While this example uses Google Sheets as the destination, you can easily modify the final destination node (e.g., send to Slack, email, database, etc.) based on your specific automation needs.? What problem is this solving? Security teams often manually look up CVE data and track changes across multiple tools. This process is inefficient and error-prone. This workflow automates the CVE lookup and historical change tracking by logging enriched vulnerability data into Google Sheets in real-time. What this workflow does This workflow is designed for CVE API lookup and change history tracking. In many vulnerability automation pipelines, it is essential to determine not only the metadata of a CVE but also how it has evolved over time. Based on the operational need—whether it's enrichment, risk scoring, or remediation validation—this workflow becomes particularly handy in surfacing both current and historical CVE data. This template performs the following actions: Accepts incoming webhook requests containing a CVE ID Queries the NVD CVE Lookup API to fetch vulnerability metadata Queries the NVD CVE History API to retrieve all historical changes Flattens both datasets into a sheet-compatible structure Appends vulnerability metadata to one sheet and change history to another within the same Google Spreadsheet Setup 🔑 Request an NVD API Key To request an NVD API Key, please provide your organization name, a valid email address, and indicate your organization type at NVD API Key Request. You must scroll to the end of the Terms of Use Agreement and check "I agree to the Terms of Use" to obtain an API Key. After submission, you will receive a single-use hyperlink via email to activate and view your API Key. If not activated within seven days, a new request must be submitted. 📊 API Rate Limits Without an API key, you're limited to 5 requests per 30-second window. With an API key, you’re allowed up to 50 requests in the same period. To prevent request throttling, it's recommended to introduce slight delays between consecutive API calls in production setups. Clone or import this workflow into your n8n instance. Set up the following credentials: Google Sheets OAuth2 NVD API Key (via HTTP Header Auth) The workflow logs data to a Google Sheet titled NVD Database, with Sheet 1 named CVE Lookup and Sheet 2 named CVE History. Trigger each workflow using the respective webhook URL, appending ?cveId=CVE-XXXX-XXXX as a query parameter. 🔍 Example Webhook Request (CVE Change History) You can test this workflow with the following example: GET https://your-domain.com/webhook/cve-history?cveId=CVE-2023-34362 How to customize this workflow Use the Edit Fields node (optional) to centralize configuration like sheet name or query input Extend the CVE flattening logic to include more nested metadata if needed Integrate notification systems (e.g., Slack or email) by branching from the processing nodes Modify webhook paths for better endpoint organization 🔐 Production Security Tips Use HTTP Header Auth on the webhook for secure access > ⚠️ This template uses webhooks and NVD API access with authentication headers. This template uses two flows: Webhook 1:** NVD CVE Lookup — Lookup CVE vulnerability metadata from NVD and sync to Google Sheet Webhook 2:** NVD CVE Change History — Track change history for CVEs via NVD and log each update Each flow: Hits NVD’s respective endpoint Uses custom JS Code node to flatten the nested JSON Syncs data to dedicated Google Sheet tabs 🧩 4 nodes: Webhook → API Call → Parse → Sheet Sync Make sure both flows are activated and webhooks exposed for external access. Based on your needs, ensure you have a secure setup—whether hosted internally or in a cloud environment—when running n8n in production.
by Marth
⚙️ How it works Workflow starts from a manual trigger or form submission with project details. It extracts key input data like client name, email, project type, deadline, and brand folder (optional). A Google Drive folder is automatically created inside a designated parent folder. The shareable link of the newly created folder is generated. A personalized email is composed and sent to the client using Gmail, including project details and folder link. 🛠️ Set up steps Google Drive Setup: Connect your Google Drive credentials in n8n. Set the parent folder ID where all project folders should be created. Gmail Setup: Connect a Gmail account with proper access. Customize the subject and message template in the Gmail node. Input Data Preparation: Ensure the following input fields are provided: client_name contact_email project_type deadline brand_drive_folder (optional) Test & Deploy: Use mock data or a test trigger to validate the workflow. Once confirmed, deploy it with the actual trigger (e.g. webhook, form submission).
by please-open.it
Intro This workflow needs a user to authenticate by using an openid connect provider in order to call the webhook. If the user is not authenticated, it starts a login process by using an Authorization Code with PKCE https://datatracker.ietf.org/doc/html/rfc7636, a standard way to authenticate users with openid connect. Then, after the user logs in, the webhook is refreshed and gets the user's token from a cookie. With this token, all details about the user are requested through the userinfo endpoint on the identity provider. How to set up with Keycloak Keycloak Keycloak is an open source identity and access management solution. Feel free to get a demo realm at https://please-open.it or get your own Keycloak server up and running. After creating a realm, go to "Realm Settings" and click on "OpenID Endpoint Configuration" Retrieve authorization_endpoint, token_endpoint and userinfo_endpoint values. Set those variables in the "Set variables" node. In Keycloak, create a new client (name it as you want) Disable the client authentication, check only "standard flow" : At the third step, put the webhook url in "valid redirect URIs", fill "Web origins" with a "+". You're done, open the webhook and it asks you to authenticate. Usage User informations The userinfo node returns this structure about the user has logged in : [ { "sub":"73a6543f-f420-4fa6-9811-209e903c348b", "email_verified":true, "preferred_username": "mathieu.passenaud@please-open.it", "email": "mathieu.passenaud@please-open.it" } ] I can use those infos in my workflow for custom operations. APIs calls the "code" node returns me a cookie named "n8n-custom-auth" which is the access_token returned by the identity provider. This access_token can be used to call APIs connected to this identity provider (for example, we call userinfo API with this token). Example : asks a user to log in with his Google account then call an API (Gmail, drive...) with his own token. How it works We published a blog post about this flow, how it works and how you can use it : https://blog.please-open.it/n8n-openid-client/
by ist00dent
This n8n template empowers you to instantly fetch a list of public holidays for any given year and country using the Nager.Date API. This is incredibly useful for scheduling, planning, or integrating holiday data into various business and personal automation workflows. 🔧 How it works Receive Holiday Request Webhook: This node acts as the entry point, listening for incoming POST requests. It expects a JSON body containing the year (e.g., 2025) and countryCode (e.g., US for United States, PH for Philippines, DE for Germany) for which you want to retrieve public holidays. Get Public Holidays: This node makes an HTTP GET request to the Nager.Date API (date.nager.at). It dynamically uses the year and countryCode from your webhook request to query the API. The API responds with a JSON array, where each object represents a public holiday with details like its date, name, and type. Respond with Holiday Data: This node sends the full list of public holidays received from Nager.Date back to the service that initiated the webhook. 👤 Who is it for? This workflow is ideal for: Businesses with International Operations: Automatically check holidays for different country branches to adjust production schedules, customer service hours, or delivery estimates. HR & Payroll Departments: Accurately calculate workdays, plan leave schedules, or process payroll taking public holidays into account. Event Planners: Avoid scheduling events on public holidays, which could impact attendance or venue availability. Travel Agencies: Inform clients about holidays in their destination country that might affect local business hours or attractions. Content & Social Media Schedulers: Plan content around national holidays to maximize engagement or avoid insensitive postings. Personal Productivity & Travel Planning: Integrate holiday data into your calendar or task management tools to plan trips or personal time off more effectively. Developers: Easily integrate a reliable source of public holiday data into custom applications, dashboards, or internal tools without managing complex datasets. 📑 Data Structure When you trigger the webhook, send a POST request with a JSON body structured as follows: { "year": 2025, "countryCode": "PH" // Example: "US", "DE", "GB", etc. } You can find a comprehensive list of supported country codes on the Nager.Date API documentation: https://www.nager.at/Country The workflow will return a JSON array, where each element is a holiday object, like this example for a single holiday: [ { "date": "2025-01-01", "localName": "New Year's Day", "name": "New Year's Day", "countryCode": "PH", "fixed": true, "global": true, "counties": null, "launchYear": null, "types": [ "Public" ] } // ... more holiday objects ] ⚙️ Setup Instructions Import Workflow: In your n8n editor, click "Import from JSON" and paste the provided workflow JSON. Configure Webhook Path: Double-click the Receive Holiday Request Webhook node. In the 'Path' field, set a unique and descriptive path (e.g., /public-holidays). Activate Workflow: Save and activate the workflow. 📝 Tips This workflow is a foundation for many powerful automations: Conditional Branching for Specific Holidays: Add an IF node after "Get Public Holidays" to check for a specific holiday (e.g., "Christmas Day"). You can then trigger different actions (e.g., send a reminder, adjust a schedule) only for that particular holiday. Filtering and Aggregating Data: Use a Filter node to only keep holidays of a certain type (e.g., "Public"). Use a Code or Function node to count the number of public holidays, or extract just the names and dates into a simpler list. Storing Holiday Data: Google Sheets/Airtable: Automatically append new holidays to a spreadsheet for easy reference or further analysis. Database: Store holiday data in a database (like PostgreSQL or MySQL) to build a custom holiday calendar application. Scheduling and Reminders: Connect this workflow to a Cron or Schedule node to run periodically (e.g., once a year at the start of the year). Use the retrieved holiday dates to set up reminders in your calendar (Google Calendar node) or send notifications (Slack, Email, SMS) a few days before an upcoming holiday. Integrate with Business Logic: Employee Leave Management: Cross-reference employee leave requests with public holidays to ensure accuracy. Automated Messages: Schedule automated "Happy Holiday" messages to customers or employees. E-commerce Shipping: Adjust estimated shipping times based on upcoming non-working days. API Key (Not needed for Nager.Date free tier): The Nager.Date API used here does not require an API key for basic public holiday lookups, which makes this template very easy to use out-of-the-box.
by Oneclick AI Squad
A lightweight no-code workflow that captures student check-in data via a mobile app or webhook, stores it in a Google Sheet, and instantly notifies the class teacher via email. 🎯 What This Does Students check in using a mobile app or QR code Their data is formatted and saved to a Google Sheet A notification email is sent to the class teacher in real time 🔧 Workflow Steps | Step | Description | | ------------------------------ | ----------------------------------------------------------- | | Student Check-in (Webhook) | Triggered via POST request from mobile app or QR scanner | | Format Data | Cleans and prepares incoming JSON into structured format | | Append or Update Row | Saves student check-in data into Google Sheets | | Email Teacher | Sends formatted check-in email to the class teacher | | Success Response | Returns a confirmation response to the mobile app or system | 📱 Example Check-in Input (Webhook Body) { "student_name": "Aarav Mehta", "student_id": "STU025", "class_name": "Grade 6B" } 📊 Google Sheets Format | Student Name | Student ID | Class | Date | Time | | ------------ | ---------- | -------- | ---------- | ----- | | Aarav Mehta | STU025 | Grade 6B | 2025-08-06 | 08:35 | Date and time are added dynamically in the workflow. ⚙️ Setup Requirements n8n Instance** – Deployed with public webhook support Google Sheets** – Sheet with columns as shown above Email SMTP Settings** – For sending teacher notification ✅ Quick Setup Instructions Import the workflow into your n8n instance Replace the webhook URL in your mobile app Set your Google Sheet ID and range Enter the teacher’s email in the “Email Teacher” node Test with mock data Deploy and use live!
by InfraNodus
Using the knowledge graphs instead of RAG vector stores This workflow creates an AI chatbot agent that has access to several knowledge bases at the same time (used as "experts"). These knowledge bases are provided using the InfraNodus GraphRAG using the knowledge graphs and providing high-quality responses without the need to set up complex RAG vector store workflows. The advantages of using GraphRAG instead of the standard vector stores for knowledge are: Easy and quick to set up (no complex data import workflows needed) A knowledge graph has a holistic view of your knowledge base Better retrieval of relations between the document chunks = higher quality responses How it works This template uses the n8n AI agent node as an orchestrating agent that decides which tool (knowledge graph) to use based on the user's prompt. Here's a description step by step: The user submits a question using the AI chatbot (n8n interface, in this case, which can be accessed via a URL or embedded to any website) The AI agent node checks a list of tools it has access to. Each tool has a description of the knowledge it has auto-generated by InfraNodus. The AI agent decides which tool should be used to generate a response. It may reformulate user's query to be more suitable for the expert. The query is then sent to the InfraNodus HTTP node endpoint, which will query the graph that corresponds to that expert. Each InfraNodus GraphRAG expert provides a rich response that takes the whole context into account and provides a response from each expert (graph) along with a list of relevant statements retrieved using a combination or RAG and GraphRAG. The n8n AI Agent node integrates the responses received from the experts to produce the final answer. The final answer is sent back to the user's chat (or a webhook endpoint) How to use You need an InfraNodus GraphRAG API account and key to use this workflow. Create an InfraNodus account Get the API key at https://infranodus.com/api-access and create a Bearer authorization key for the InfraNodus HTTP nodes. Create a separate knowledge graph for each expert (using PDF / content import options) in InfraNodus For each graph, go to the workflow, paste the name of the graph into the body name field. Keep other settings intact or learn more about them at the InfraNodus access points page. Once you add one or more graphs as experts to your flow, add the LLM key to the OpenAI node and launch the workflow Requirements An InfraNodus account and API key An OpenAI (or any other LLM) API key Customizing this workflow You can use this same workflow with a Telegram bot, so you can interact with it using Telegram. There are many more customizations available. Check out the complete guide at https://support.noduslabs.com/hc/en-us/articles/20174217658396-Using-InfraNodus-Knowledge-Graphs-as-Experts-for-AI-Chatbot-Agents-in-n8n Also check out the video tutorial with a demo:
by ist00dent
This n8n template enables you to instantly generate high-quality screenshots of any specified public URL by simply sending a webhook request. It’s an indispensable tool for developers, content creators, marketers, or anyone needing on-demand visual captures of web pages without manual intervention, all while including crucial security measures. 🔧 How it works Receive URL Webhook: This node acts as the entry point for the workflow. It listens for incoming POST requests and expects a JSON body containing a url property with the website you want to screenshot. You can trigger it from any application or service capable of sending an HTTP POST request. Validate URL for SSRF: This is a crucial security step. This Function node validates the incoming url to prevent Server-Side Request Forgery (SSRF) vulnerabilities. It checks for valid http:// or https:// protocols and, more importantly, ensures the URL does not attempt to access internal/private IP addresses or localhost. If the URL is deemed unsafe or invalid, it flags it for an error response. IF URL Valid: This IF node checks the isValidUrl flag set by the previous validation step. If the URL is valid (true), the workflow proceeds to take the screenshot. If the URL is invalid or flagged for security (false), the workflow branches to Respond with Validation Error. Take Screenshot: This node sends an HTTP GET request to the ScreenshotMachine API to capture an image of the validated URL. Remember to replace YOUR_API_KEY in the URL field of this node with your actual API key from ScreenshotMachine. Respond with Screenshot Data: This node sends the data received directly from the Take Screenshot node back to the original caller of the webhook. This response typically includes information about the generated screenshot, such as the URL to the image file, success status, and other metadata from the ScreenshotMachine API. Respond with Validation Error: If the IF URL Valid node determines the URL is unsafe or invalid, this node sends a descriptive error message back to the webhook caller, explaining why the request was denied due to security concerns or an invalid format. 🔒 Security Considerations This template includes a dedicated Validate URL for SSRF node to mitigate Server-Side Request Forgery (SSRF) vulnerabilities. SSRF attacks occur when an attacker can trick a server-side application into making requests to an unintended location. Without validation, an attacker could potentially use your n8n workflow to scan internal networks, access sensitive internal resources, or attack other services from your n8n server. The validation checks for: Only http:// or https:// protocols. Prevention of localhost or common private IP ranges (e.g., 10.x.x.x, 172.16.x.x - 172.31.x.x, 192.168.x.x). While this validation adds a significant layer of security, always ensure your n8n instance is properly secured and updated. 👤 Who is it for? This workflow is ideal for: Developers: Automate screenshot generation for testing, monitoring, or integrating visual content into applications. Content Creators: Quickly grab visuals for articles, presentations, or social media posts. Marketing Teams: Create dynamic visual assets for campaigns, ads, or competitive analysis. Automation Enthusiasts: Integrate powerful screenshot capabilities into existing automated workflows. Website Owners: Monitor how your website appears across different tools or over time. 📑 Prerequisites To use this template, you will need: An n8n instance (cloud or self-hosted). An API Key from ScreenshotMachine. You can obtain one by signing up on their website: https://www.screenshotmachine.com/ 📑 Data Structure When you trigger the webhook, send a POST request with a JSON body structured as follows: { "url": "https://www.example.com" } If the URL is valid, the workflow will return the JSON response directly from the ScreenshotMachine API. This response typically includes information about the generated screenshot, such as the URL to the image file, success status, and other metadata: { "status": "success", "hash": "...", "url": "https://www.screenshotmachine.com/...", "size": 12345, "mimetype": "image/jpeg" } If the URL is invalid or blocked by the security validation, the workflow will return an error response similar to this: { "status": "error", "message": "Access to private IP addresses is not allowed for security reasons." } ⚙️ Setup Instructions Import Workflow: In your n8n editor, click "File" > "Import from JSON" and paste the provided workflow JSON. Configure Webhook Path: Double-click the Receive URL Webhook node. In the 'Path' field, set a unique and descriptive path (e.g., /website-screenshot). Add ScreenshotMachine API Key: Double-click the Take Screenshot node. In the 'URL' parameter, locate YOUR_API_KEY and replace it with your actual API key obtained from ScreenshotMachine. Example URL structure: http://api.screenshotmachine.com/?key=YOUR_API_KEY&url={{ $json.validatedUrl }} Activate Workflow: Save and activate the workflow. 📝 Tips Processing Screenshots: You're not limited to just responding with the screenshot data! You can insert additional nodes after the Take Screenshot node (and before the Respond with Screenshot Data node) to further process or utilize the generated image. Common extensions include: Saving to Cloud Storage: Use nodes for Amazon S3, Google Drive, or Dropbox to store the screenshots automatically, creating an archive. Sending via Email: Attach the screenshot to an email notification using an Email or Gmail node for automated alerts or reports. Posting to Chat Platforms: Share the screenshot directly in a Slack, Discord, or Microsoft Teams channel for team collaboration or visual notifications. Image Optimization: Use an image processing node (if available via an API or a custom function) to resize, crop, or compress the screenshot before saving or sending. Custom Screenshot Parameters: The ScreenshotMachine API supports various optional parameters (e.g., width, height, quality, delay, fullpage). Upgrade: Extend the Receive URL Webhook to accept these parameters in the incoming JSON body (e.g., {"url": "...", "width": 1024, "fullpage": true}). Leverage: Dynamically pass these parameters to the Take Screenshot HTTP Request node's URL to customize your screenshots for different use cases. Scheduled Monitoring: Upgrade: Combine this workflow with a Cron or Schedule node. Set it to run periodically (e.g., daily, hourly). Leverage: Automatically monitor your website or competitors' sites for visual changes. You could then save screenshots to cloud storage and even trigger a comparison tool if a change is detected. Automated Visual Regression Testing: Upgrade: After taking a screenshot, store it with a unique identifier. In subsequent runs, take a new screenshot, then use an external image comparison API or a custom function to compare the new screenshot with a baseline. Leverage: Get automated alerts if visual elements on your website change unexpectedly, which is critical for quality assurance. Dynamic Image Generation for Social Media/Marketing: Upgrade: Feed URLs (e.g., for new blog posts, product pages) into this workflow. After generating the screenshot, use it to create dynamic social media images or marketing assets. Leverage: Streamline the creation of engaging visual content, saving design time.
by Anurag
Description This workflow automates the extraction of structured data from invoices or similar documents using Docsumo's API. Users can upload a PDF via an n8n form trigger, which is then sent to Docsumo for processing and structured parsing. The workflow fetches key document metadata and all line items, reconstructs each invoice row with combined header and item details, and finally exports all results as an Excel file. Ideal for automating invoice data entry, reporting, or integrating with accounting systems. How It Works A user uploads a PDF document using the integrated n8n form trigger. The workflow securely sends the document to Docsumo via REST API. After uploading, it checks and retrieves the parsed document results. Header information and table line items are extracted and mapped into structured records. The complete result is exported as an Excel (.xls) file. Setup Steps Docsumo Account: Register and obtain your API key from Docsumo. n8n Credentials Manager: Add your Docsumo API key as an HTTP header credential (never hardcode the key in the workflow). Workflow Configuration: In the HTTP Request nodes, set the authentication to your saved Docsumo credentials. Update the file type or document type in the request (e.g., "type": "invoice") as needed for your use case. Testing: Enable the workflow and use the built-in form to upload a sample invoice for extraction. Features Supports PDF uploads via n8n’s built-in form or via API/webhook extension. Sends files directly to Docsumo for document data extraction using secure credentials. Extracts invoice-level metadata (number, date, vendor, totals) and full line item tables. Consolidates all data in easy-to-use Excel format for download or integration. Modular node structure, easily extensible for further automation. Prerequisites Docsumo account with API access enabled. n8n instance with form, HTTP Request, Code, and Excel/Convert to File nodes. Working Docsumo API Key stored securely in n8n’s credential manager. Example Use Cases | Scenario | Benefit | |---------------------|-----------------------------------------| | Invoice Automation | Extract line items and metadata rapidly | | Receipts Processing | Parse and digitize business receipts | | Bulk Bill Imports | Batch process bills for analytics | Notes Credentials Security:** Do not store your API key directly in HTTP Request nodes; always use n8n credentials manager. Sticky Notes:** The workflow includes sticky notes for setup, input, API call, extraction, and output steps to assist template users. Custom Columns:** You can customize header or line item extraction by editing the Code node as needed.
by Zain Ali
🧾 Generate Project Summary from meeting transcript Who’s it for 🤝 Project managers looking to automate client meeting summaries Client success teams needing structured deliverables from transcripts Agencies and consultants who want consistent, repeatable documentation How it works / What it does ⚙️ Trigger: Manual or webhook trigger kicks off the workflow. Get meeting transcript: Reads the raw transcript from a specified Google Docs file. Generate summary: Sends transcript + instructions to OpenAI (gpt-4.1-mini) to produce a structured project summary. Convert to HTML: Transforms the LLM-generated Markdown into styled HTML. Prepare request: Wraps HTML and metadata into a multipart request body. Create Google Doc: Uploads the new “Project Summary” document into your Drive folder. How to set up 🛠️ Credentials Google Docs & Drive OAuth2 credentials OpenAI API key (gpt-4.1-mini) Nodes configuration Manual Trigger / webhook node Google Docs “Get meeting transcript” node: set documentURL AI Chat Model node: select gpt-4.1-mini Markdown node: enable tables & emoji Google Drive “CreateGoogleDoc” node: set target folder ID Paste in your IDs Update documentURL to your transcript doc Update google_drive_folder_id in the Set node Execute Click “Execute Workflow” or call via webhook Requirements 📋 n8n Google OAuth2 scopes for Docs & Drive OpenAI account with GPT-4.1-mini access A Google Drive folder to store summaries How to customize ✨ Output format**: Edit the Markdown prompt in the ChainLlm node to adjust headings or tone Timeline section**: Extend LLM prompt template with your own phase table Styling**: Tweak inline CSS in the Code node (Prepare_Request) for fonts or margins Trigger**: Swap Manual Trigger for HTTP/Webhook trigger to integrate with other tools Language model**: Upgrade to a different model by changing model.value in the AI node
by KlickTipp
Community Node Disclaimer: This workflow uses KlickTipp community nodes. How It Works This workflow automates personalized WhatsApp message template delivery triggered by events in KlickTipp or by messages sent to the Whatsapp Business account. When a contact triggers an Outbound, the workflow uses a pre-approved WhatsApp message template to send dynamic, real-time messages through the WhatsApp Business Cloud API. When receiving messages it checks whether a cancellation should be processed or if a auto-response is sent. This setup is ideal for time-sensitive campaigns such as: Birthday greetings Discount or promo notifications Follow-ups on product or service interest Key Features KlickTipp Trigger Starts the workflow when a specific outbound is triggered Typical use case: subcriber receives activation Tag and triggers an Outbound which sends a webhook call to trigger WhatsApp messaging. WhatsApp Business Cloud - Message Trigger Listens to messages from the contact and processes answers with answering auto-responder or by tagging the contact in KlickTipp. WhatsApp Business Cloud - Sending Template Messages Sends WhatsApp message templates using a pre-approved template. Template placeholders are filled with data from KlickTipp custom fields. Setup Instructions Set up the KlickTipp and Whatsapp nodes in your n8n instance. Authenticate your WhatsApp and KlickTipp accounts. Create the necessary custom fields to match the data structure Verify and customize field assignments in the workflow to align with your specific form and subscriber list setup. | Field Label | Field Type | |--------------------------------|-------------| | Whatsapp_Produkt/Dienstleistung | Single line | | | Whatsapp_Name/Unternehmen | Single line | | Whatsapp_Link_Endung | Single line | Testing & Deployment Use a real test contact with all required fields filled. Trigger the Outbound in KlickTipp using the activation tag and answer with a message to the template. Run the scenario once in n8n to verify successful delivery of the whatsapp message template to your test contact as well as the reception of the auto-responder and the subscription and tagging in KlickTipp to stop further messages. Campaign Expansion Ideas Connect campaign to process keywords like "STOP" from WhatsApp messages Pair WhatsApp with welcome email series for onboarding. Use tags like product_interest_X for precise segmentation. A/B test templates with different CTA formats or timings. Monitor CTRs via dynamic URLs in WhatsApp templates. Benefits Multi-channel engagement:** Adds WhatsApp to your marketing toolkit. Dynamic content:** Personalizes messages using contact data. KlickTipp campaign control** Whatsapp contacts can for example signal with messages like "STOP" to receive the according Tag in KlickTipp in order to start/end automations. > 💡 Pro Tip: Customize the domain link ending per campaign or product line. This allows targeted redirects, e.g., meinshop.de/ProduktA or `mein Ressources: Send WhatsApp Templates with KlickTipp Use KlickTipp Community Node in n8n Automate Workflows: KlickTipp Integration in n8n