by May Ramati Kroitero
Automated Job Hunt with Tavily — Setup & Run Guide What this template does? Automatically searches for recent job postings (example: “Software Engineering Intern”), extracts structured details from each posting using an AI agent + Tavily, bundles results, and emails a single weekly digest. Estimated setup time: ~30 minutes 1. Required credentials Before you import or run the workflow, create/configure these credentials in your n8n instance: OpenAI (Chat model) — used by the OpenAI Chat Model and Message a model nodes. Add an OpenAI credential (name it e.g. OpenAi account) and paste your OpenAi API key. Tavily API — used by the Search in Tavily node. Add a Tavily credential (name it e.g. Tavily account) and add your Tavily API key. Gmail (OAuth2) — used by the Send a message node to deliver the digest email. Configure Gmail OAuth2 credential and select it for the Gmail node (e.g. Gmail account. 2. Node-by-node configuration (what to check/change) Schedule Trigger Node name: Schedule Trigger Configure interval: daily or weekly (example: weekly, trigger at 08:00). Note: This is the workflow start. Adjust to your preferred cadence. AI Agent Node name: AI Agent Important: First step — set the agent’s prompt / system message. Search in Tavily (Tavily Tool node) Node name: Tavily Query: user-editable field (example default: Roles posted this week for Software Engineering) Advice: keep query under 400 chars; change to target role/location keywords. Options recommended: Search Depth: advanced (optional, better extraction) Max Results: 15 Time Range: week (limit to past week) Include Raw Content: true (fetch full page content for better extraction) Include Domains: indeed.com, glassdoor.com,linkedin.com — prioritize trusted sources Edit Fields / Set (bundle) Node name: Edit Fields (Set) Purpose: Collect the agent output into one field (e.g., $json.output or Response) for downstream processing. Message a Model (OpenAI formatting step) Node name: Message a model Uses OpenAI (the openAiApi credential). This node can be used to reformat or normalize the agent output into consistent blocks if needed. Use the same system rules you used for the agent (the prompt/system message earlier). You can also leave this minimal if the agent already outputs structured blocks. Code Node (Parsing & structuring) Node name: Code Purpose: Split the agent/LLM text into separate job postings and extract fields with regex. Aggregate Node Node name: Aggregate Mode: aggregateAllItemData (this combines all parsed postings into a single data array so the Gmail node can loop over them) Gmail node (Send a message) Node name: Send a message sendTo: set to recipient(s) (e.g., your inbox) subject: e.g. New Jobs for this week! emailType: text (or html if you build HTML content) message (body): use the expression that loops through data and formats every posting. 3. How to test (quick steps) Set credentials in n8n (OpenAI, Tavily, Gmail). Run the Schedule Trigger manually (use the “Execute Workflow” or manually trigger nodes). Inspect the Search in Tavily node output — confirm it returns results. Inspect the AI Agent and Message a model outputs — ensure formatted postings are produced and separated by --- END JOB POSTING ---. Run the Code node — confirm it returns structured items with posting_number, job_title, requirements[], etc. Check Aggregate output: you should see a single item with data array. In Gmail node, run a test send — confirm the email receives one combined message with all postings. 4. Troubleshooting tips Gmail body shows [Array: …]: Avoid dragging the array raw — use the expression that maps data to formatted strings. Code node split error: Occurs when raw is undefined. Ensure previous node returns message.content or adjust to use $input.all() and join contents safely. Missing fields after parsing: Check LLM/agent output labels match the Code node’s regex (e.g., Job Title:). If labels differ, update regex or LLM formatting. 5. Customization ideas Filter by location or remote-only roles, or add keyword filters (seniority, stack). Send results to Google Sheets or Slack instead of/in addition to Gmail. Add an LLM summarization step to create a 1-line highlight per posting.
by Charles
🚀 Daily IndieHackers Reddit Trend Analysis to Slack > Transform Reddit chaos into actionable startup intelligence > Get AI-powered insights from r/indiehackers delivered to your Slack every morning 🎯 Who's It For This template is designed for startup founders, growth teams, and product managers who need to: Stay ahead of indie hacker trends without manual Reddit browsing Understand what's working in the entrepreneurial community Get actionable insights for product and marketing decisions Keep their team informed about emerging opportunities Perfect for teams building products for entrepreneurs or anyone wanting to leverage community intelligence for competitive advantage. ✨ What It Does Transform your morning routine with automated intelligence gathering that delivers structured, AI-powered summaries of the hottest r/indiehackers discussions directly to your Slack channel. 🧠 Smart Analysis Features | Feature | Description | |---------|-------------| | 🔥 Hotness Scoring | Calculates engagement scores using time-decay algorithms | | 📊 Topic Extraction | Identifies key themes and trending subjects | | 💰 Traction Signals | Spots revenue, metrics, and growth indicators | | 🎯 Theme Clustering | Groups posts into actionable categories | | ⚡ Action Items | Generates specific recommendations for your team | 📱 Slack Integration Receive beautifully formatted messages with: Executive summaries and key takeaways Top 3 hottest posts with engagement metrics Interactive buttons for deeper exploration Team discussion prompts ⚙️ How It Works graph LR A[🕐 Daily 8AM Trigger] --> B[📱 Fetch Reddit Posts] B --> C[🔄 Process Data] C --> D[🤖 Gemini AI Analysis] D --> E[✨ Groq Slack Formatting] E --> F[💬 Deliver to Slack] 🔄 The Complete Process Step 1: Automated Trigger Every morning at 8 AM, the workflow springs into action Step 2: Reddit Data Collection Fetches the latest 5 posts from r/indiehackers with full metadata Step 3: Data Processing Structures raw Reddit data for optimal AI analysis Step 4: AI-Powered Analysis Gemini AI performs deep analysis calculating hotness scores, extracting topics, and identifying patterns Step 5: Slack Formatting Groq AI Agent transforms insights into beautiful Slack Block Kit messages Step 6: Team Delivery Your designated Slack channel receives the formatted analysis 🛠️ Requirements You'll need API access for: Reddit (OAuth2), Google Gemini, Groq, and Slack (OAuth2). All have free tiers available. 🚀 Setup Guide 1️⃣ Configure Your Credentials Add these credentials in n8n: Reddit OAuth2, Google Gemini, Groq, and Slack OAuth2. The workflow will guide you through each setup. 2️⃣ Customize the Schedule Default: Daily at 8:00 AM To modify: Edit the "Daily Schedule" cron trigger node // Example: Run at 9:30 AM { "triggerTimes": { "item": [{ "hour": 9, "minute": 30 }] } } 3️⃣ Set Your Slack Destination Open the "Send to Slack" node Select your target channel Configure notification preferences 4️⃣ Adjust Analysis Parameters Post Limit: Change from default 5 posts // In "Get many posts" Reddit node "limit": 10 // Recommended: 3-10 posts Context Customization: { "channel_type": "team", "audience": "Growth, Product, and Founders", "cta_link": "https://your-dashboard.com", "timeframe_label": "This Week" } 🎨 Customization Options 🔍 Analysis Focus Areas Transform the workflow for different insights: SaaS-Focused Analysis Add to Gemini prompt: "Focus on SaaS and B2B insights, prioritizing recurring revenue and product-market fit signals" Geographic Targeting Add: "Prioritize posts relevant to [your region/market]" Stage-Specific Insights Add: "Focus on [early-stage/growth-stage] startup challenges" 📈 Hotness Algorithm Tweaking Default Formula: (ups + 2*num_comments) * freshness_decay Emphasize Comments: (ups + 3*num_comments) * freshness_decay Include Upvote Ratio: (ups * upvote_ratio + 2*num_comments) * freshness_decay 🌐 Multi-Subreddit Analysis Expand beyond r/indiehackers: Additional Communities: r/startups r/entrepreneur r/SideProject r/buildinpublic r/nocode 💾 Data Storage Extensions Enhance with historical tracking: | Node Type | Purpose | Benefit | |-----------|---------|---------| | Google Sheets | Trend storage | Historical analysis | | Airtable | Advanced data management | Rich analytics | | Webhook | External analytics | Custom dashboards | 📊 Expected Output 📱 Daily Slack Message Structure 🚀 IndieHackers Trends — This Week 📋 TL;DR: [One-sentence key insight] 🔥 Hot Posts (Top 3) [Post Title] (Hotness: 8.7) Topics: SaaS launch, pricing strategy 💬 23 comments | 👍 156 ups | 📅 Posted 4 hours ago [Open Reddit Button] 🧭 Themes Summary Go-to-market tactics — 3 posts, hotness: 24.1 Product launches — 2 posts, hotness: 18.3 ✅ What to Do Now Test pricing page variations based on community feedback Consider cold email strategies mentioned in hot posts Validate product ideas using discussed frameworks [Open Dashboard Button] 💡 Pro Tips for Success 🎯 Optimization Strategies Week 1-2: Baseline Monitor output quality and team engagement Note which insights generate the most discussion Week 3-4: Refinement Adjust AI prompts based on feedback Fine-tune hotness scoring for your needs Month 2+: Advanced Usage Add historical trend analysis Create custom dashboards with stored data Build feedback loops for continuous improvement 🚨 Common Pitfalls to Avoid | Issue | Solution | |-------|---------| | API Rate Limits | Reduce post count or increase time intervals | | Poor Insight Quality | Refine prompts with specific examples | | Team Engagement Drop | Rotate focus areas and encourage thread discussions | | Information Overload | Limit to top 3 posts and key themes only | 🔧 Troubleshooting ❌ Common Issues & Solutions "Model not found" Error Cause: Gemini regional availability Fix: Check supported regions or switch to alternative AI model Slack Formatting Broken Cause: Invalid Block Kit JSON Fix: Validate JSON structure in AI Agent output Missing Reddit Data Cause: API credentials or rate limits Fix: Verify OAuth2 setup and check usage quotas AI Timeouts Cause: Too much data or complex prompts Fix: Reduce post count or simplify analysis requests ⚡ Performance Optimization Keep analysis under 10 posts for optimal speed Monitor execution times in n8n logs Add error handling nodes for production reliability Use webhook timeouts for external API calls 🌟 Advanced Use Cases 📈 Competitive Intelligence Modify prompts to track specific competitors or market segments mentioned in discussions 🎯 Product Validation Focus analysis on posts related to your product category for market research 📝 Content Strategy Use trending topics to inform your content calendar and thought leadership 🤝 Community Engagement Identify opportunities to participate in discussions and build relationships Ready to transform your startup intelligence gathering? 🚀 Deploy this workflow and start receiving actionable insights tomorrow morning!
by Evervise
🤖 AI Business Automation Opportunity Finder Turn automation audits into high-ticket sales with this ROI-focused n8n workflow powered by 4 specialized AI agents that identify and quantify automation opportunities in any business. What It Does This workflow analyzes any business and delivers a comprehensive automation blueprint with concrete ROI calculations in under 60 seconds. Perfect for agencies, consultants, and automation experts looking to generate qualified leads and close high-value deals. Unlike generic automation advice, this delivers personalized, quantified opportunities ranked by return on investment - making it incredibly easy for prospects to say yes. 🤖 Four Specialized AI Agents Business Analyst - Deep analysis of business model, workflows, pain points, tech stack, and scalability challenges Process Mapper - Maps all repetitive processes, calculates time waste, identifies bottlenecks across the entire operation Automation Architect - Designs 15+ specific automation solutions with tools, complexity ratings, and implementation steps ROI Calculator - Calculates detailed ROI for each automation, ranks top 10, creates 90-day implementation roadmap ✨ Key Features Concrete Dollar Savings**: Every automation shows exact time saved, labor cost saved, and payback period Top 10 Ranked by ROI**: Opportunities prioritized by impact vs. effort with detailed financial analysis 90-Day Implementation Roadmap**: Month-by-month plan showing progressive savings milestones Comprehensive Process Mapping**: Identifies inefficiencies they didn't even mention Tool-Specific Recommendations**: Exact tools and platforms needed (n8n, Zapier, Make, etc.) Beautiful HTML Reports**: Professional, conversion-focused email with 3-tier pricing built in Multiple CTAs**: Strategically placed conversion points throughout the report 📊 What Gets Analyzed Business Analysis Business model and revenue streams Operational workflows and processes Current tech stack assessment Team capacity and resource allocation Growth stage and scalability blockers Industry-specific automation patterns Process Mapping Comprehensive workflow documentation Time waste analysis (hours per month) Bottleneck identification Process dependencies and integration opportunities Quick win vs. strategic project categorization Automation Architecture For each of 15+ automation opportunities: Clear description of what it automates Specific tools required Step-by-step implementation flow Complexity rating (Easy/Medium/Hard) Prerequisites and requirements Additional benefits beyond time savings Real-world use case examples ROI Calculations For each automation: Time saved per week/month/year Labor cost savings (calculated from team size/industry) One-time implementation cost Ongoing monthly costs Payback period in months 12-month net savings ROI percentage Priority score (0-10) 💼 Perfect For Automation Agencies**: High-value lead magnet that pre-sells your services Business Consultants**: Demonstrate ROI before engagement No-Code Developers**: Show concrete value of your expertise Digital Transformation Consultants**: Quantify the opportunity SaaS Companies**: Lead gen for automation/workflow tools Freelancers**: Land bigger clients with data-driven proposals 🚀 Why This Converts Better Than Other Lead Magnets Traditional Lead Magnets: Generic advice ("You should automate") Subjective benefits ("Save time") No clear next steps Conversion rate: 5-10% This Workflow: Specific to their business** (personalized analysis) Quantified in dollars** ($50K+ annual savings) Prioritized action plan** (top 10 ranked by ROI) Clear implementation path** (90-day roadmap) Conversion rate: 20-30%** to strategy call 40-50% of calls close** to paid engagement 📈 Expected Business Results Per 100 Form Submissions: 25-30 strategy calls booked** (25-30% conversion) 10-15 deals closed** (40-50% call-to-close rate) $12K-18K in initial revenue** (mix of Tier 1 & 2) 2-4 retainer clients** ($30K-60K annual value) Total potential: $42K-78K** from 100 leads Why It Works: Self-qualifying**: Detailed form filters serious prospects Pre-sold**: They see the value before the call ROI-focused**: Speaks CFO language (dollars, not features) Urgency**: Shows money being wasted daily Social proof**: Built-in testimonials and case studies 📋 What You Need Required n8n instance (self-hosted or cloud) Anthropic API key (Claude Sonnet 4.5) Gmail account or SMTP provider Optional Enhancements CRM integration (HubSpot, Salesforce, Pipedrive) Slack notifications for high-value leads Calendly for automatic call booking Zapier/Make for additional workflows Analytics tracking (Mixpanel, Segment) ⚙️ Technical Details AI Model**: Claude Sonnet 4.5 (4 sequential agents) Average Runtime**: 50-70 seconds Cost Per Analysis**: ~$0.20-0.30 Form Fields**: 9 (business description, industry, team size, tasks, tools, bottleneck, revenue, email, name) Output**: Comprehensive HTML email with all analyses, pricing, and CTAs 🎨 Customization Options The workflow is fully customizable and includes detailed documentation: Adjust ROI calculation parameters (labor rates by industry) Modify agent prompts for specific niches Customize pricing tiers and packages Add/remove form fields White-label the entire report Integrate with your CRM/marketing stack Segment responses by company size or revenue Add video walkthroughs or personalized messages Create industry-specific versions 📊 Form Fields Explained The 9-field form is strategically designed to gather intelligence: Business Description (textarea): Core operations and offerings Industry/Niche (text): Context for automation patterns Team Size (dropdown): Affects ROI calculations and tool recommendations Repetitive Tasks (textarea): Gold mine for automation opportunities Current Tools (textarea): Integration points and tech stack assessment Biggest Bottleneck (textarea): Primary pain point for targeting Monthly Revenue (optional dropdown): For accurate ROI estimates and lead scoring Email (required): For report delivery Name (required): For personalization 🔧 Setup Difficulty Basic - Requires basic n8n knowledge and API configuration Setup Steps Import workflow JSON to n8n Add Anthropic API credentials Configure Gmail/SMTP credentials Customize branding and pricing in email template Test with sample business scenarios Deploy form on your website Set up follow-up sequences (recommended) 📚 Included Documentation Comprehensive sticky notes** for every component Setup instructions** with prerequisites Customization guide** for different industries Pricing strategy** breakdown and alternatives Conversion optimization** tips Follow-up sequence** recommendations Sales script** suggestions for strategy calls Marketing promotion** ideas 🌟 Advanced Use Cases 1. Lead Magnet Embed on website to capture qualified automation leads continuously 2. Discovery Tool Use during sales calls to demonstrate immediate value and build credibility 3. Content Marketing Offer in LinkedIn posts, email campaigns, YouTube videos for viral growth 4. Partner Program White-label for partners/affiliates to generate leads in their networks 5. Upsell Sequence For existing clients, identify additional automation opportunities 6. Industry Templates Create versions for specific industries (real estate, e-commerce, agencies) 7. Competitive Intelligence Analyze competitor operations and position your services ⚡ Why This Workflow Stands Out Compared to Generic Automation Audits: ✅ Quantified in dollars vs. vague "save time" claims ✅ Personalized to their business vs. generic templates ✅ Prioritized by ROI vs. random feature lists ✅ Actionable roadmap vs. overwhelming possibilities ✅ Tool-specific vs. theoretical concepts Compared to Manual Analysis: ✅ 60 seconds vs. 2-3 hours of consultant time ✅ $0.25 cost vs. $300-500 in labor ✅ Consistent quality vs. variable analyst experience ✅ Scalable vs. bottlenecked by human capacity ✅ 24/7 available vs. business hours only 🤝 Support & Community 📖 Website: https://evervise.ai/ ✨ Support: mark.marin@evervise.com N8N Link 🎁 Bonus Resources Included Follow-up email sequence** (3 emails over 10 days) Sales call script** for strategy calls Objection handling** guide Pricing calculator** spreadsheet Marketing assets** (social media templates) Case study template** for testimonials Tags automation lead-generation roi-calculator business-analysis process-mapping ai-agents anthropic claude workflow-automation business-consulting no-code n8n-workflows high-ticket-sales conversion-optimization saas-tools Ready to turn automation audits into recurring revenue? Import this workflow and start attracting qualified leads who can see the exact dollar value you provide before they even talk to you. Average user results: $42K-78K revenue from first 100 form submissions.
by Akshay
Overview This project is an AI-powered hotel receptionist built using n8n, designed to handle guest queries automatically through WhatsApp. It integrates Google Gemini, Redis, MySQL, and Google Sheets via LangChain to create an intelligent conversational system that understands and answers booking-related questions in real time. A standout feature of this workflow is its AI model-switching system — it dynamically assigns users to different Gemini models, balancing traffic, improving performance, and reducing API costs. How It Works WhatsApp Trigger The workflow starts when a hotel guest sends a message through WhatsApp. The system captures the message text, contact details, and session information for further processing. Redis-Based Model Management The workflow checks Redis for a saved record of the user’s previously assigned AI model. If no record exists, a Model Decider node assigns a new model (e.g., Gemini 1 or Gemini 2). Redis then stores this model assignment for an hour, ensuring consistent routing and controlled traffic distribution. Model Selector The Model Selector routes each user’s request to the correct Gemini instance, enabling parallel execution across multiple AI models for faster response times and cost optimization. AI Agent Logic The LangChain AI Agent serves as the system’s reasoning core. It: Interprets guest questions such as: “Who checked in today?” “Show me tomorrow’s bookings.” “What’s the price for a deluxe suite for two nights?” Generates safe, read-only SQL SELECT queries. Fetches the requested data from the MySQL database. Combines this with dynamic pricing or promotions from Google Sheets, if available. Response Delivery Once the AI Agent formulates an answer, it sends a natural-sounding message back to the guest via WhatsApp, completing the interaction loop. Setup & Requirements Prerequisites Before deploying this workflow, ensure the following: n8n Instance** (local or hosted) WhatsApp Cloud API** with messaging permissions Google Gemini API Key** (for both models) Redis Database** for user session and model routing MySQL Database** for hotel booking and guest data Google Sheets Account** (optional, for pricing or offer data) Step-by-Step Setup Configure Credentials Add all API credentials in n8n → Settings → Credentials (WhatsApp, Redis, MySQL, Google). Prepare Databases MySQL Tables Example: bookings(id, guest_name, room_type, check_in, check_out) rooms(id, type, rate, status) Ensure the MySQL user has read-only permissions. Set Up Redis Create Redis keys for each user: llm-user:<whatsapp_id> = { "modelIndex": 0 } TTL: 3600 seconds (1 hour). Connect Google Sheets (Optional) Add your sheet under Google Sheets OAuth2. Use it to manage room rates, discounts, or seasonal offers dynamically. WhatsApp Webhook Configuration In Meta’s Developer Console, set the webhook URL to your n8n instance. Select message updates to trigger the workflow. Testing the Workflow Send messages like “Who booked today?” or a voice message. Confirm responses include real data from MySQL and contextual replies. Key Features Text & voice support** for guest interactions Automatic AI model-switching** using Redis Session memory** for context-aware conversations Read-only SQL query generation** for database safety Google Sheets integration** for live pricing and availability Scalable design** supporting multiple LLM instances Example Guest Queries | Guest Query | AI Response Example | |--------------|--------------------| | “Who checked in today?” | “Two guests have checked in today: Mr. Ahmed (Room 203) and Ms. Priya (Room 410).” | | “How much is a deluxe room for two nights?” | “A deluxe room costs $120 per night. The total for two nights is $240.” | | “Do you have any discounts this week?” | “Yes! We’re offering a 10% weekend discount on all deluxe and suite rooms.” | | “Show me tomorrow’s check-outs.” | “Three check-outs are scheduled tomorrow: Mr. Khan (101), Ms. Lee (207), and Mr. Singh (309).” | Customization Options 🧩 Model Assignment Logic You can modify the Model Decider node to: Assign models based on user load, region, or priority level. Increase or decrease TTL in Redis for longer model persistence. 🧠 AI Agent Prompt Adjust the system prompt to control tone and response behavior — for example: Add multilingual support. Include upselling or booking confirmation messages. 🗂️ Database Expansion Extend MySQL to include: Staff schedules Maintenance records Restaurant reservations Then link new queries in the AI Agent node for richer responses. Tech Stack n8n** – Workflow automation & orchestration Google Gemini (PaLM)** – LLM for reasoning & generation Redis** – Model assignment & session management MySQL** – Booking & guest data storage Google Sheets** – Dynamic pricing reference WhatsApp Cloud API** – Messaging interface Outcome This workflow demonstrates how AI automation can transform hotel operations by combining WhatsApp communication, database intelligence, and multi-model AI reasoning. It’s a production-ready foundation for scalable, cost-optimized, AI-driven hospitality solutions that deliver fast, accurate, and personalized guest interactions.
by Incrementors
Overview: This n8n workflow automates the complete blog publishing process from topic research to WordPress publication. It researches topics, writes SEO-optimized content, generates images, publishes posts, and notifies teams—all automatically from Google Sheets input. How It Works: Step 1: Client Management & Scheduling Client Data Retrieval:** Scans master Google Sheet for clients with "Active" project status and "Automation" blog publishing setting Publishing Schedule Validation:** Checks if current day matches client's weekly frequency (Mon, Tue, Wed, Thu, Fri, Sat, Sun) or if set to "Daily" Content Source Access:** Connects to client-specific Google Sheet using stored document ID and sheet name Step 2: Content Planning & Selection Topic Filtering:** Retrieves rows where "Status for Approval" = "Approved" and "Live Link" = "Pending" Content Validation:** Ensures Focus Keyword field is populated before proceeding Single Topic Processing:** Selects first available topic to maintain quality and prevent API rate limits Step 3: AI-Powered Research & Writing Comprehensive Research:** Google Gemini analyzes search intent, competitor content, audience needs, trending subtopics, and LSI keywords Content Generation:** Creates 800-1000 word articles with natural keyword integration, internal linking, and conversational tone optimized for Indian investors Quality Assessment:** Evaluates content for human-like writing, conversational tone, readability, and engagement factors Content Optimization:** Automatically fixes grammar, punctuation, sentence flow, and readability issues while maintaining HTML structure Step 4: Visual Content Creation Image Prompt Generation:** OpenAI creates detailed prompts based on blog title and content for professional visuals Image Generation:** Ideogram AI produces 1248x832 resolution images with realistic styling and professional appearance Binary Processing:** Downloads and converts generated images to binary format for WordPress upload Step 5: WordPress Publication Media Upload:** Uploads generated image to WordPress media library with proper filename and headers Content Publishing:** Creates new WordPress post with title, optimized content, and embedded image Featured Image Assignment:** Sets uploaded image as post's featured thumbnail for proper display Category Assignment:** Automatically assigns posts to predefined category Step 6: Tracking & Communication Status Updates:** Updates Google Sheet with live blog URL in "Live Link" column using S.No. as identifier Team Notification:** Sends Discord message to designated channel with published blog link and review request Process Completion:** Triggers next iteration or workflow conclusion based on remaining topics Setup Steps: Estimated Setup Time: 45-60 minutes Required API Credentials: 1. Google Sheets API Service account with sheets access OAuth2 credentials for client-specific sheets Proper sharing permissions for all target sheets 2. Google Gemini API Active API key with sufficient quota Access to Gemini Pro model for content generation Rate limiting considerations for bulk processing 3. OpenAI API GPT-4 access for creative prompt generation Sufficient token allocation for daily operations Fallback handling for API unavailability 4. Ideogram AI API Premium account for quality image generation API key with generation permissions Understanding of rate limits and pricing 5. WordPress REST API Application passwords for each client site Basic authentication setup with proper encoding REST API enabled in WordPress settings User permissions for post creation and media upload 6. Discord Bot API Bot token with message sending permissions Channel ID for notifications Guild access and proper bot roles Master Sheet Configuration: Document Structure: Create primary tracking sheet with columns Client Name:** Business identifier Project Status:** Active/Inactive/Paused Blog Publishing:** Automation/Manual/Disabled Website URL:** Full WordPress site URL with trailing slash Blog Posting Auth Code:** Base64 encoded username: password On Page Sheet:** Google Sheets document ID for content planning WeeklyFrequency:** Daily/Mon/Tue/Wed/Thu/Fri/Sat/Sun Discord Channel:** Channel ID for notifications Content Planning Sheet Structure: Required Columns (exact naming required): S.No.:** Unique identifier for tracking Focus Keyword:** Primary SEO keyword Content Topic** Article title/subject Target Page:** Internal linking target Words:** Target word count Brief URL:** Content brief reference Content URL:** Draft content location Status for Approval:** Pending/Approved/Rejected Live Link:** Published URL (auto-populated) WordPress Configuration: REST API Activation:** Ensure wp-json endpoint accessibility User Permissions:** Create dedicated user with Editor or Administrator role Application Passwords:** Generate secure passwords for API authentication Category Setup:** Create or identify category ID for automated posts Media Settings:** Configure upload permissions and file size limits Security:** Whitelist IP addresses if using security plugins Discord Integration Setup: Bot Creation:** Create application and bot in Discord Developer Portal Permissions:** Grant Send Messages, Embed Links, and Read Message History Channel Configuration:** Set up dedicated channel for blog notifications User Mentions:** Configure user ID for targeted notifications Message Templates:** Customize notification format and content Workflow Features & Capabilities: Content Quality Standards: SEO Optimization:** Natural keyword integration with LSI keywords and related terms Readability:** Conversational tone with short sentences and clear explanations Structure:** Proper HTML formatting with headings, lists, and internal links Length:** Consistent 800-1000 word count for optimal engagement Audience Targeting:** Content tailored for Indian investor audience with relevant examples Image Generation Specifications: Resolution:** 1248x832 pixels optimized for blog headers Style:** Realistic professional imagery with human subjects Design:** Clean layout with heading text placement (bottom or left side) Quality:** High-resolution output suitable for web publishing Branding:** Light beige to gradient backgrounds with golden overlay effects Error Handling & Reliability: Graceful Failures:** Workflow continues even if individual steps encounter errors API Rate Limits:** Built-in delays and retry mechanisms for external services Data Validation:** Checks for required fields before processing Backup Processes:** Alternative paths for critical failure points Logging:** Comprehensive tracking of successes and failures Security & Access Control: Credential Encryption:** All API keys stored securely in n8n vault Limited Permissions:** Service accounts with minimum required access Authentication:** Basic auth for WordPress with encoded credentials Data Privacy:** No sensitive information exposed in logs or outputs Access Logging:** Track all sheet modifications and blog publications Troubleshooting: Common Issues: API Rate Limits:** Check your API quotas and usage limits WordPress Authentication:** Verify your basic auth credentials are correct Sheet Access:** Ensure Google Sheets API has proper permissions Image Generation Fails:** Check Ideogram API key and quotas Need Help?: For technical support or questions: Email: info@incrementors.com Contact Form: https://www.incrementors.com/contact-us/
by Ada
How it works: This template demonstrates how to build a low-code, AI-powered data analysis workflow in n8n. It enables you to connect to various data sources (such as MySQL, Google Sheets, or local files), process and analyze structured data, and generate natural language insights and visualizations using external AI APIs. Key Features: Flexible data source selection (MySQL, Google Sheets, Excel/CSV, etc.) AI-driven data analysis, interpretation, and visualization via HTTP Request nodes Automated email delivery of analysis results (Gmail node) Step-by-step sticky notes for credential setup and workflow customization Step-by-step: Apply for an API Key You can easily create and manage your API Key in the ADA official website - API. To begin with, You need to register for an ADA account. Once on the homepage, click the bottom left corner to access the API management dashboard. Here, you can create new APIs and set the credit consumption limit for each API. A single account can create up to 10 APIs. After successful creation, you can copy the API Key to set credentials. You can also view the credit consumption of each API and manage your APIs. Set credentials In HTTP nodes(DataAnalysis, DataInterpretation, and DataVisualization) select Authentication → Generic Credential Type Choose Header Auth → Create new credential Name the header Authorization, which must be exactly 'Authorization', and fill in the previously applied API key Data Source: The workflow starts by extracting structured data from your chosen source (e.g., database, spreadsheet, or file). AI Skills: Data is sent to external AI APIs for analysis, interpretation, and visualization, based on your configured queries. Result Processing: The AI-generated results are converted to HTML or Markdown as needed. Output: The final report or visualization is sent via email. You can easily adapt this step to other output channels. API Keys Required: Ada API Key: For AI data analysis Gmail OAuth2: For sending emails (if using Gmail node) (Optional) Data source credentials: For MySQL, Google Sheets, etc.
by Manav Desai
WhatsApp RAG Chatbot with Supabase, Gemini 2.5 Flash, and OpenAI Embeddings This n8n template demonstrates how to build a WhatsApp-based AI chatbot that answers user questions using document retrieval (RAG) powered by Supabase for storage, OpenAI embeddings for semantic search, and Gemini 2.5 Flash LLM for generating high-quality responses. Use cases are many: Turn your WhatsApp into a knowledge assistant for FAQs, customer support, or internal company documents — all without coding. Good to know The workflow uses OpenAI embeddings for both document embeddings and query embeddings, ensuring accurate semantic search. Gemini 2.5 Flash LLM** is used to generate user-friendly answers from the retrieved context. Messages are processed in real-time and sent back directly to WhatsApp. Workflow is modular — you can split document ingestion and query handling for large-scale setups. Supabase and WhatsApp API credentials must be configured before running. How it works Trigger: A new WhatsApp message triggers the workflow via webhook. Message Check: Determines if the message is a query or a document upload. Document Handling: Fetch file URL from WhatsApp. Convert binary to text. Generate embeddings with OpenAI and store them in Supabase. Query Handling: Generate query embeddings with OpenAI. Retrieve relevant context from Supabase. Pass context to Gemini 2.5 Flash LLM to compose a response. Response: Send the answer back to the user on WhatsApp. Optional: Add Gmail node to forward chat logs or daily summaries. How to use Configure WhatsApp Business API webhook for incoming messages. Add your Supabase and OpenAI credentials in n8n’s credentials manager. Upload documents via WhatsApp to populate the Supabase vector store. Ask queries — the bot retrieves context and answers using Gemini 2.5 Flash. Requirements WhatsApp Business API** (or Twilio WhatsApp Sandbox) Supabase account** (vector storage for embeddings) OpenAI API key** (for generating embeddings) Gemini API access** (for LLM responses) Customising this workflow Swap WhatsApp with Telegram, Slack, or email for different chat channels. Extend ingestion to other sources like Google Drive or Notion. Adjust the number of retrieved documents or prompt style in Gemini for tone control. Add a Gmail output node to send logs or alerts automatically.
by Yusuke Yamamoto
Daily AI News Summary & Gmail Delivery This n8n template demonstrates how to build an autonomous AI agent that automatically scours the web for the latest news, intelligently summarizes the top stories, and delivers a professional, formatted news digest directly to your email inbox. Use cases are many: Create a personalized daily briefing to start your day informed, keep your team updated on industry trends and competitor news, or automate content curation for your newsletter. Good to know At the time of writing, costs will depend on the LLM you select via OpenRouter and your usage of the Tavily Search API. Both services offer free tiers to get started. This workflow requires API keys and credentials for OpenRouter, Tavily, and Gmail. The AI Agent's system prompt is configured to produce summaries in Japanese. You can easily change the language and topics by editing the prompt in the "AI News Agent" node. How it works The workflow begins on a daily schedule, which you can configure to your preferred time. A Code node dynamically generates a search query for the current day's most important news across several categories. The AI Agent receives this query. It uses its attached tools to perform the task: It uses the Tavily News Search tool to find relevant, up-to-date articles from the web. It then uses the OpenRouter Chat Model to analyze the search results, identify the most significant stories, and write a summary for each. The agent's output is strictly structured into a JSON format, containing a main title and an array of individual news stories. Another Code node takes this structured JSON data and transforms it into a clean, professional HTML-formatted email. Finally, the Gmail node sends the beautifully formatted email to your specified recipient. How to use Before you start, you must add your credentials for OpenRouter, Tavily, and Gmail in their respective nodes. Customize the schedule in the "Schedule Trigger" node to set the daily delivery time. Change the recipient's email address in the final "Send a message" (Gmail) node. Requirements OpenRouter account (for access to various LLMs) Tavily AI account (for the real-time search API) Google account with Gmail enabled for sending emails via OAuth2 Customising this workflow Change the delivery channel:** Easily swap the final Gmail node for a Slack, Discord, or Telegram node to send the news summary to a team channel. Focus the news topics:** Modify the "Prepare News Query" node to search for highly specific topics, such as "latest advancements in artificial intelligence" or "financial news from the European market." Archive the news:** Add a node after the AI Agent to save the structured JSON data to a database or Google Sheet, allowing you to build a searchable news archive over time.
by Muhammadumar
This is the core AI agent used for isra36.com. Don't trust complex AI-generated SQL queries without double-checking them in a safe environment. That's where isra36 comes in. It automatically creates a test environment with the necessary data, generates code for your task, runs it to double-check for correctness, and handles errors if necessary. If you enable auto-fixing, isra36 will detect and fix issues on its own. If not, it will ask for your permission before making changes during debugging. In the end, you get thoroughly verified code along with full details about the environment it ran in. Setup It is an embedded chat for the website, but you can pin input data and run it on your own n8n instance. Input data sessionId: uuid\_v4. Required to handle ongoing conversations and to create table names (used as a prefix). threadId: string | nullable. If aiProvider is openai, conversation history is managed on OpenAI’s side. This is not needed in the first request—it will start a new conversation. For ongoing conversations, you must provide this value. You can get it from the OpenAIMainBrain node output after the first run. If you want to start a new conversation, just leave it as null. apiKey: string. Your API key for the selected aiProvider. aiProvider: string. Currently supported values: openai, openrouter. model: string. The AI model key (e.g., gpt-4.1, o3-mini, or any supported model key from OpenRouter). autoErrorFixing: boolean. If true, it will automatically fix errors encountered when running code in the environment. If false, it will ask for your permission before attempting a fix. chatInput: string. The user's prompt or message. currentDbSchemaWithData: string. A JSON representation of the database schema with sample data. Used to inform the AI about the current database structure during an ongoing conversation. Please use the '[]' value in the first request. Example string for filled db structure : '{"users":[{"id":1,"name":"John Doe","email":"john.d@example.com"},{"id":2,"name":"Jane Smith","email":"jane.s@example.com"}],"products":[{"product_id":101,"product_name":"Laptop","price":999.99}]}' Make sure to fill in your credentials: Your OpenAI or OpenRouter API key Access to a local PostgreSQL database for test execution You can view your generated tables using your preferred PostgreSQL GUI. We recommend DBeaver. Alternatively, you can activate the “Deactivated DB Visualization” nodes below. To use them, connect each to the most recent successful Set node and manually adjust the output. However, the easiest and most efficient method is to use a GUI. Workflow Explanation We store all input values in the localVariables node. Please use this node to get the necessary data. OpenAI has a built-in assistant that manages chat history on their side. For OpenRouter, we handle chat history locally. That’s why we use separate nodes like ifOpenAi and isOpenAi. Note that if logic can also be used inside nodes. The AutoErrorFixing loop will run only a limited number of times, as defined by the isMaxAutoErrorReached node. This prevents infinite loops. The Execute_AI_result node connects to the PostgreSQL test database used to execute queries. Guidance on customization This setup is built for PostgreSQL, but it can be adapted to any programming language, and the logic can be extended to any programming framework. To customize the logic for other programming languages: Change instruction parameter in localVariables node. Replace the Execute_AI_result PostgreSQL node with another executable node. For example, you can use the HTTP Request node. Update the GenerateErrorPrompt node's prompt parameter to generate code specific to your target language or framework. Any workflows built on top of this must credit the original author and be released under an open-source license.
by Habeeb Mohammed
Who's it for This workflow is perfect for individuals who want to maintain detailed financial records without the overhead of complex budgeting apps. If you prefer natural language over data entry forms and want an AI assistant to handle the bookkeeping, this template is for you. It's especially useful for: People who want to track cash and online transactions separately Anyone who lends money to friends/family and needs debt tracking Users comfortable with Slack as their primary interface Those who prefer conversational interactions over manual spreadsheet updates What it does This AI-powered finance tracker transforms your Slack workspace into a personal finance command center. Simply mention your bot with transactions in plain English (e.g., "₹500 cash food, borrowed ₹1000 from John"), and the AI agent will: Parse transactions using natural language understanding via Google Gemini Calculate balance changes for cash and online accounts Show a preview of changes before saving anything Update Google Sheets only after you approve Track debts (who owes you, who you owe, repayments) Send daily reminders at 11 PM with current balances and active debts The workflow maintains conversational context using PostgreSQL memory, so you can say things like "yesterday's transactions" or "that payment to Sarah" and it understands the context. How it works Scheduled Daily Check-in (11 PM) Fetches current balances from Google Sheets Retrieves all active debts Formats and sends a Slack message with balance summary Prompts you to share the day's transactions AI Agent Transaction Processing When you mention the bot in Slack: Phase 1: Parse & Analyze Extracts amount, payment type (cash/online), category (food, travel, etc.) Identifies transaction type (expense, income, borrowed, lent, repaid) Stores conversation context in PostgreSQL memory Phase 2: Calculate & Preview Reads current balances from Google Sheets Calculates new balances based on transactions Shows formatted preview with projected changes Waits for your approval ("yes"/"no") Phase 3: Update Database (only after approval) Logs transactions with unique IDs and timestamps Updates debt records with person names and status Recalculates and stores new balances Handles debt lifecycle (Active → Settled) Phase 4: Confirmation Sends success message with updated balances Shows active debts summary Includes logging timestamp Requirements Essential Services: n8n instance (self-hosted or cloud) Slack workspace with admin access Google account Google Gemini API key PostgreSQL database Recommended: Claude AI model (mentioned in workflow notes as better alternative to Gemini) How to set up 1. Google Sheets Setup Create a new Google Sheet with three tabs named exactly: Balances Tab: | Date | Cash_Balance | Online_Balance | Total_Balance | |------|--------------|----------------|---------------| Transactions Tab: | Transaction_ID | Date | Time | Amount | Payment_Type | Category | Transaction_Type | Person_Name | Description | Added_At | |----------------|------|------|--------|--------------|----------|------------------|-------------|-------------|----------| Debts Tab: | Person_Name | Amount | Type | Date_created | Status | Notes | |-------------|--------|------|--------------|--------|-------| Add header rows and one initial balance row in the Balances tab with today's date and starting amounts. 2. Slack App Setup Go to api.slack.com/apps and create a new app Under OAuth & Permissions, add these Bot Token Scopes: app_mentions:read chat:write channels:read Install the app to your workspace Copy the Bot User OAuth Token Create a dedicated channel (e.g., #personal-finance-tracker) Invite your bot to the channel 3. Google Gemini API Visit ai.google.dev Create an API key Save it for n8n credentials setup 4. PostgreSQL Database Set up a PostgreSQL database (you can use Supabase free tier): Create a new project Note down connection details (host, port, database name, user, password) The workflow will auto-create the required table 5. n8n Workflow Configuration Import the workflow and configure: A. Credentials Google Sheets OAuth2**: Connect your Google account Slack API**: Add your Bot User OAuth Token Google Gemini API**: Add your API key PostgreSQL**: Add database connection details B. Update Node Parameters All Google Sheets nodes: Select your finance spreadsheet Slack nodes: Select your finance channel Schedule Trigger: Adjust time if you prefer a different check-in hour (default: 11 PM) Postgres Chat Memory: Change sessionKey to something unique (e.g., finance_tracker_your_name) Keep tableName as n8n_chat_history_finance or rename consistently C. Slack Trigger Setup Activate the "Bot Mention trigger" node Copy the webhook URL from n8n In Slack App settings, go to Event Subscriptions Enable events and paste the webhook URL Subscribe to bot event: app_mention Save changes 6. Test the Workflow Activate both workflow branches (scheduled and agent) In your Slack channel, mention the bot: @YourBot ₹100 cash snacks Bot should respond with a preview Reply "yes" to approve Verify Google Sheets are updated How to customize Change Transaction Categories Edit the AI Agent's system message to add/remove categories. Current categories: travel, food, entertainment, utilities, shopping, health, education, other Modify Daily Check-in Time Change the Schedule Trigger's triggerAtHour value (0-23 in 24-hour format). Add Currency Support Replace ₹ with your currency symbol in: Format Daily Message code node AI Agent system prompt examples Switch AI Models The workflow uses Google Gemini, but notes recommend Claude. To switch: Replace "Google Gemini Chat Model" node Add Claude credentials Connect to AI Agent node Customize Debt Types Modify AI Agent's system prompt to change debt handling logic: Currently: I_Owe and They_Owe_Me You can add more types or change naming Add More Payment Methods Current: cash, online To add more (e.g., credit card): Update AI Agent prompt Modify Balances sheet structure Update balance calculation logic Change Approval Keywords Edit AI Agent's Phase 2 approval logic to recognize different approval phrases. Add Spending Analytics Extend the daily check-in to calculate: Weekly/monthly spending summaries Category-wise breakdowns Use additional Code nodes to process transaction history Important Notes ⚠️ Never trigger with normal messages - Only use app mentions (@botname) to avoid infinite loops where the bot replies to its own messages. 💡 Context Awareness - The bot remembers conversation history, so you can reference "yesterday", "last week", or previous transactions naturally. 🔒 Data Privacy - All your financial data stays in your Google Sheets and PostgreSQL database. The AI only processes transaction text temporarily. 📊 Backup Regularly - Export your Google Sheets periodically as backup. Pro Tips: Start with small test transactions to ensure everything works Use consistent person names for debt tracking The bot understands various formats: "₹500 cash food" = "paid 500 rupees in cash for food" You can batch transactions in one message: "₹100 travel, ₹200 food, ₹50 snacks"
by Václav Čikl
Description: This sophisticated workflow automates personalized email campaigns for musicians and band managers. The system processes contact databases, analyzes previous Gmail conversation history, and uses AI to generate contextually appropriate emails tailored to different contact categories (venues, festivals, media, playlists). Key Features: Multi-category support**: Bookers, festivals, media, playlist curators Conversation context analysis**: Maintains relationship history from Gmail AI-powered personalization**: Custom prompts for each contact type Multi-language support**: Localized content and prompts Gmail integration**: Automatic draft creation with signatures Bulk processing**: Handle hundreds of contacts efficiently Use Cases: Album/single promotion campaigns Tour booking automation Festival submission management Playlist pitching campaigns Media outreach automation Venue relationship management Perfect For: Independent musicians and bands Music managers and booking agents Record labels with multiple artists PR agencies in music industry Festival organizers (for artist outreach) Required Setup: 1. Credentials & APIs: Gmail OAuth2** (read messages + create drafts permissions) Google Sheets API** (for AutomatizationHelper configuration) OpenAI API** or compatible LLM (for content generation) 2. Required Files: Contact Database** (CSV): Your venue/media/festival contacts AutomatizationHelper** (Google Sheets): Campaign configuration, prompts, links 3. Example Data: 📁 Download Example Files The folder contains: Sample contact database (CSV) AutomatizationHelper template (CSV + Google Sheets) Detailed setup instructions (README) Data Structure: Contact Database Fields: venue_name - Organization name category - booker/festival/media/playlisting email_1 - Primary email (required) email_2 - Secondary email (optional, for CC) active - active/inactive (for filtering) language - EN/DE/etc. (for localization) AutomatizationHelper Fields: LANGUAGE - Language code CATEGORY - Contact type LATEST_SINGLE - Spotify/Apple Music link LATEST_VIDEO - YouTube/Vimeo link EPK - Electronic Press Kit URL SIGNATURE - HTML email signature PROMPT - AI prompt for this category SUBJECT - Email subject template Setup Instructions: Step 1: Prepare Your Data Download example files from the Google Drive folder Replace sample data with your real contacts and band information Customize AI prompts for your communication style Update signature with your contact details Step 2: Configure APIs Set up Gmail OAuth2 credentials in n8n Configure Google Sheets API access Add OpenAI API key for content generation Step 3: Import & Configure Workflow Import the workflow JSON Connect your credentials to respective nodes Update Google Sheets URL in AutomatizationHelper node Test with a small contact sample first Step 4: Customize & Run Adjust AI prompts in AutomatizationHelper for your style Update contact categories as needed Run workflow - drafts will be created in Gmail for review Tips: Start small**: Test with 5-10 contacts first Review drafts**: Always review AI-generated content before sending Update regularly**: Keep your AutomatizationHelper current with latest releases Monitor responses**: Track which prompts work best for different categories Language mixing**: You can have contacts in multiple languages Important Notes: Emails are created as Gmail drafts - manual review recommended Respects Gmail API rate limits automatically Conversation history analysis works best with existing email threads HTML signatures are automatically added (Gmail API limitation workaround) Handles multiple languages simultaneously Maintains conversation context across campaigns Generates unique content for each contact Template Author: Questions or need help with setup? Email: xciklv@gmail.com LinkedIn: https://www.linkedin.com/in/vaclavcikl/
by Roshan Ramani
Generate Personalized & Aggregate Survey Reports with Jotform and Gemini AI Overview Automatically transform Jotform survey responses into intelligent, professional reports. This workflow generates personalized insights for each respondent and statistical summaries for administrator, all hands-free. Who Should Use This Survey managers needing automated report generation Market researchers analyzing response data Product teams collecting customer feedback Organizations using Jotform without built-in analytics What It Does Two-Part Report System: Personal Reports (Instant) Triggers immediately when respondent submits survey AI analyzes their individual responses using Google Gemini Generates customized insights and recommendations Sends professional HTML report to respondent's email Weekly Aggregate Reports (Scheduled) Runs automatically every week Collects all survey submissions Calculates statistics, percentages, and trends Identifies patterns across all respondents Sends comprehensive analysis to admin Key Features ✓ Real-time personal report generation ✓ Intelligent AI-powered analysis (Google Gemini) ✓ Professional HTML email formatting ✓ Automatic weekly summaries ✓ Statistical analysis and trend identification ✓ Zero manual processing required ✓ Fully customizable prompts and styling ✓ Works with any Jotform survey structure Setup Requirements Jotform** account with active survey form Get Jotform from here n8n** instance (cloud or self-hosted) Google Gemini API** key Gmail** account (for sending reports) Jotform API** key What You Get in Reports Personal Reports Include: Respondent Profile** – Auto-extracted demographics (age, role, location, email) Key Insights** – 3-4 AI-generated insights specific to their responses Personalized Recommendations** – 3-4 actionable suggestions based on their answers Professional Formatting** – HTML-styled email with your branding colors Mobile Responsive** – Looks great on all devices Fully Customizable: Edit the AI prompt to generate different types of insights Change HTML styling (colors, fonts, layout) Add/remove sections (logos, footers, additional analysis) Adjust the tone (professional, casual, technical, etc.) Include custom branding and messaging Aggregate Reports Include: Total Respondents Count** – How many submissions in the period Demographic Breakdown** – Distribution of respondent profiles Response Statistics** – Percentages and frequencies for each question Answer Distribution** – Most popular choices across all responses Trend Analysis** – Patterns and correlations in the data Key Findings** – Top 5-7 insights from all responses combined Statistical Metrics** – Averages, frequencies, comparisons Fully Customizable: Choose which statistics to calculate and display Change how data is visualized and presented Customize report styling and branding Adjust analysis depth and metrics focus Add custom sections for your specific needs Modify HTML layout and design How Reports Look Personal Report Structure (Email): Header: Professional gradient background with thank you message Section 1: Respondent Details (extracted from survey) Section 2: Key Insights (AI-generated from their responses) Section 3: Recommendations (personalized suggestions) Footer: Thank you message and company info Aggregate Report Structure (Email): Header: Report title and date range Section 1: Total respondent count and demographics Section 2: Question-by-question response breakdown Section 3: Statistical analysis and trends Section 4: Key findings and patterns discovered Section 5: Actionable insights for decision-makers Footer: Next report date and company branding Quick Start Get your Jotform Form ID and API key Enable Google Gemini API and create API key Set up Gmail OAuth2 credentials in n8n Import this workflow Add your credentials to the nodes Test with a sample survey submission Complete setup instructions are included in the workflow as an expandable sticky note. Workflow Logic PERSONAL REPORTS: Survey Submission ↓ Collect Response Data ↓ AI Analysis & Insights Generation ↓ Create Styled HTML Report ↓ Send to Respondent Email AGGREGATE REPORTS: Weekly Schedule Triggers ↓ Fetch All Submissions ↓ Statistical Analysis & Trend Detection ↓ Generate Insights from All Data ↓ Create Summary HTML Report ↓ Send to Admin Email Use Cases Customer Feedback Surveys** – Analyze responses, send personalized insights Product Research** – Track trends across respondents weekly Market Research** – Automated statistical reporting Employee Surveys** – Personalized feedback + company trends Event Feedback** – Instant attendee insights + organizer summary Customer Satisfaction (NPS)** – Personalized follow-ups + trend analysis Lead Qualification** – Auto-analyze prospect responses and route accordingly