by Mohammadreza azari
Overview This workflow is designed for eCommerce store owners and marketing teams who use WooCommerce. It helps segment customers based on their purchasing behavior using the RFM (Recency, Frequency, Monetary) model. By identifying high-value customers, new buyers, and at-risk segments, you can tailor your marketing strategies and improve customer retention. How It Works Trigger: The workflow can be started manually or on a scheduled basis (e.g., weekly). Retrieve Orders: It fetches completed orders from your WooCommerce store from the past year. RFM Analysis: It groups orders by customer and calculates their RFM scores. Customer Segmentation: Based on RFM scores, customers are categorized into marketing segments (e.g., Champions, At Risk, Lost). Summary Report: Generates a styled HTML report with a table summarizing customer segments and suggested marketing actions. Setup Instructions Connect WooCommerce: Go to the WooCommerce node. Add or select your WooCommerce API credentials. You need the Base URL, Consumer Key, and Consumer Secret. Ensure API access is enabled in your WooCommerce settings. Customize Segmentation (Optional): In the "Calculate RFM Scores" code node, you can adjust the logic that assigns segment labels based on score combinations. You can also update the marketing suggestions in the second "Code" node. Run the Workflow: Use the "Manual Start" node for testing. Enable the "Weekly Trigger" node to automate execution. View Report: The final HTML node outputs a complete styled report. You can send this via email or integrate it with other services. Requirements WooCommerce store with API access enabled. Valid API credentials (Base URL, Consumer Key, Consumer Secret). n8n instance with access to the internet.
by David Olusola
This workflow analyzes images submitted via a form using OpenAI Vision, then delivers the analysis result directly to your Telegram chat. ✅ Use case examples: • Users submit screenshots for instant AI interpretation • Automated document or receipt analysis with Telegram delivery • Quick OCR or image classification workflows ⸻ ⚙️ Setup Guide Form Submission Trigger • Connect your form app (e.g. Typeform, Tally, or n8n’s own webhook form) to the On form submission trigger node. • Ensure it sends the image file or URL as input. OpenAI Vision Analysis • In the OpenAI node, select Analyze Image operation. • Provide your OpenAI API key and configure the prompt to instruct the model on what to analyze (e.g. “Describe this receipt in detail”). Set Telegram Chat ID • Use this manual node to input your Telegram Chat ID for delivery. • Alternatively, automate this with a database lookup or user session if building for multiple users. Telegram Delivery Node • Connect your Telegram Bot to n8n using your bot token. • Set up the sendMessage operation, using the analysis result from the previous node as the message text. Testing • Click Execute workflow. • Submit an image via your form and confirm it delivers to your Telegram as expected.
by Vitali
Template Description This n8n workflow template allows you to create a masked email address using the Fastmail API, triggered by a webhook. This is especially useful for generating disposable email addresses for privacy-conscious users or for testing purposes. Workflow Details: Webhook Trigger: The workflow is initiated by sending a POST request to a specific webhook. You can include state and description in your request body to customize the masked email's state and description. Session Retrieval: The workflow makes an HTTP request to the Fastmail API to retrieve session information. It uses this data to authenticate further requests. Create Masked Email: Using the retrieved session data, the workflow sends a POST request to Fastmail's JMAP API to create a masked email. It uses the provided state and description from the webhook payload. Prepare Output: Once the masked email is successfully created, the workflow extracts the email address and attaches the description for further processing. Respond to Webhook: Finally, the workflow responds to the original POST request with the newly created masked email and its description. Requirements: Fastmail API Access**: You will need valid API credentials for Fastmail configured with HTTP Header Authentication. Authorization Setup**: Optionally set up authorization if your webhook is exposed to the internet to prevent misuse. Custom Webhook Request**: Use a tool like curl or create a shortcut on macOS/iOS to send the POST request to the webhook with the necessary JSON payload, like so: curl -X POST -H 'Content-Type: application/json' https://your-n8n-instance/webhook/87f9abd1-2c9b-4d1f-8c7f-2261f4698c3c -d '{"state": "pending", "description": "my mega fancy masked email"}' This template simplifies the process of integrating masked email functionality into your projects or workflows and can be extended for various use cases. Feel free to use the companion shortcut I've also created. Please update the authorization header in the shortcut if needed. https://www.icloud.com/shortcuts/ac249b50eab34c04acd9fb522f9f7068
by Angel Menendez
Enhance Query Resolution with the Knowledge Base Tool! Our KB Tool - Confluence KB is crafted to seamlessly integrate into the IT Ops AI SlackBot Workflow, enhancing the IT support process by enabling sophisticated search and response capabilities via Slack. Workflow Functionality: Receive Queries**: Directly accepts user queries from the main workflow, initiating a dynamic search process. AI-Powered Query Transformation**: Utilizes OpenAI's models or local ai to refine user queries into searchable keywords that are most likely to retrieve relevant information from the Knowledge Base. Confluence Integration**: Executes searches within Confluence using the refined keywords to find the most applicable articles and information. Deliver Accurate Responses**: Gathers essential details from the Confluence results, including article titles, links, and summaries, preparing them to be sent back to the parent workflow for final user response. To view a demo video of this workflow in action, click here. Quick Setup Guide: Ensure correct configurations are set for OpenAI and Confluence API integrations. Customize query transformation logic as per your specific Knowledge Base structure to improve search accuracy. Need Help? Dive into our Documentation or get support from the Community Forum! Deploy this tool to provide precise and informative responses, significantly boosting the efficiency and reliability of your IT support workflow.
by shepard
Overview This workflow leverages the LangChain code node to implement a fully customizable conversational agent. Ideal for users who need granular control over their agent's prompts while reducing unnecessary token consumption from reserved tool-calling functionality (compared to n8n's built-in Conversation Agent). Setup Instructions Configure Gemini Credentials: Set up your Google Gemini API key (Get API key here if needed). Alternatively, you may use other AI provider nodes. Interaction Methods: Test directly in the workflow editor using the "Chat" button Activate the workflow and access the chat interface via the URL provided by the When Chat Message Received node Customization Options Interface Settings: Configure chat UI elements (e.g., title) in the When Chat Message Received node Prompt Engineering: Define agent personality and conversation structure in the Construct & Execute LLM Prompt node's template variable ⚠️ Template must preserve {chat_history} and {input} placeholders for proper LangChain operation Model Selection: Swap language models through the language model input field in Construct & Execute LLM Prompt Memory Control: Adjust conversation history length in the Store Conversation History node Requirements: ⚠️ This workflow uses the LangChain Code node, which only works on self-hosted n8n. (Refer to LangChain Code node docs)
by Aji Prakoso
This workflow contains community nodes that are only compatible with the self-hosted version of n8n. This workflow provides a complete, ready-to-use template for a Retrieval-Augmented Generation (RAG) system. It allows you to build a powerful AI chatbot that can answer questions based on the content of PDF documents you provide, using a modern and powerful stack for optimal performance. Good to know Costs:** This workflow uses paid services (OpenAI, Pinecone, Cohere). Costs will be incurred based on your usage. Please review the pricing pages for each service to understand the potential expenses. Video Tutorial (Bahasa Indonesia):** For a step-by-step guide on how this workflow functions, you can watch the accompanying video tutorial here: N8N Tutorial: Membangun Chatbot RAG dengan Pinecone, OpenAI, & Cohere How it works This workflow operates in two distinct stages: 1. Data Ingestion & Indexing: It begins when a .pdf file is uploaded via the n8n Form Trigger. The Default Data Loader node processes the PDF, and the Recursive Character Text Splitter breaks down the content into smaller, manageable chunks. The Embeddings OpenAI node converts these text chunks into vector embeddings (numerical representations). Finally, the Pinecone Vector Store node takes these embeddings and stores (upserts) them into your specified Pinecone index, creating a searchable knowledge base. 2. Conversational AI Agent: A user sends a message through the Chat Trigger. The AI Agent receives the message and uses its VectorDB tool to search the Pinecone index for relevant information. The Reranker Cohere node refines these search results, ensuring only the most relevant context is selected. The user's original question and the refined context are sent to the OpenAI Chat Model (gpt-4.1), which generates a helpful, context-aware answer. The Simple Memory node maintains conversation history, allowing for natural, multi-turn dialogues. How to use Using this workflow is a two-step process: Populate the Knowledge Base: First, you need to add documents. Trigger the workflow by using the Form Trigger and uploading a PDF file. Wait for the execution to complete. You can do this for multiple documents. Start Chatting: Once your data has been ingested, open the Chat Trigger's interface and start asking questions related to the content of your uploaded documents. The Form Trigger is just an example. Feel free to replace it with other triggers, such as a node that watches a Google Drive or Dropbox folder for new files. Requirements To run this workflow, you will need active accounts and API keys for the following services. OpenAI Account & API Key:** Function: Powers text embedding and the final chat generation. Required for the Embeddings OpenAI and OpenAI Chat Model nodes. Pinecone Account & API Key:** Function: Used to store and retrieve your vector knowledge base. Required for the Pinecone Vector Store and VectorDB nodes. You also need to provide your Pinecone Environment. Cohere Account & API Key:** Function: Improves the accuracy of your chatbot by re-ranking search results for relevance. Required for the Reranker Cohere node. Customising this workflow This template is a great starting point. Here are a few ways you can customize it: Change the AI Personality:* Edit the *System Message** in the AI Agent node to change the bot's behavior, tone, or instructions. Use Different Models:** You can easily swap the OpenAI model for another one (e.g., gpt-3.5-turbo for lower costs) in the OpenAI Chat Model node. Adjust Retrieval:** In the VectorDB tool node, you can modify the Top K parameter to retrieve more or fewer document chunks to use as context. Automate Ingestion:** Replace the manual Form Trigger with an automated one, like a node that triggers whenever a new file is added to a specific cloud storage folder.
by Kunsh
A streamlined AI-powered tool that extracts actionable technical insights from HackerOne security reports for advanced bug bounty hunters. How It Works Send any HackerOne report URL (e.g., https://hackerone.com/reports/123456) to the chat interface. The AI agent will: Fetch the report JSON automatically Analyze for unique techniques, payloads, and root causes Extract reusable insights in a structured format Summarize with practical pentesting value Setup Requirements Google Gemini API credentials configured Chat interface deployed and accessible HackerOne report URLs Output Format Summary: One-liner impact statement Techniques: Payloads, code snippets, exploitation steps Pro Tips: Reusable insights for future hunts Perfect for rapid triage and building your personal exploit knowledge base.
by Automate With Marc
🤖 AI Customer Support Agent with Google Docs Knowledge (Telegram + OpenAI) This no-code workflow turns your Telegram bot into an intelligent, always-on AI support agent that references your business documentation in Google Docs to respond to customer queries—instantly and accurately. Watch full step-by-step video tutorial of the build here: https://youtu.be/Mlv7CjGO7wI 🔧 How it works: Telegram Trigger – Captures incoming messages from users on your Telegram bot Langchain AI Agent (OpenAI GPT) – Interprets the message and uses RAG (retrieval-augmented generation) techniques to craft an answer Google Docs Tool – Connects to and retrieves context from your specified Google Doc (e.g. FAQ, SOPs, policies) Memory Buffer – Keeps track of recent chat history for more human-like conversations Telegram Reply Node – Sends the AI-generated response back to the user 💡 Use Cases: E-commerce customer service SaaS product onboarding Internal helpdesk bot for teams WhatsApp-style support for digital businesses 🧠 What makes this powerful: Supports complex questions by referencing a live Google Doc knowledge base Works in plain conversational language (no buttons or forms needed) Runs 24/7 with zero code Easily extendable to Slack, WhatsApp, or email support 🛠️ Tools used: Telegram Node (trigger + send) Langchain Agent with OpenAI GPT Google Docs Tool Memory Buffer Sticky Notes for easy understanding
by Yaron Been
Automated system for monitoring and analyzing competitor activities, funding rounds, and market movements using CrunchBase data. 🚀 What It Does Tracks competitor funding rounds Monitors leadership changes Analyzes investment patterns Identifies new market entries Tracks product launches 🎯 Perfect For Startup founders Business strategists Market analysts Investment professionals Corporate development ⚙️ Key Benefits ✅ Competitive intelligence ✅ Early warning system ✅ Market trend analysis ✅ Strategic insights ✅ Time-saving automation 🔧 What You Need CrunchBase API access n8n instance Google Sheets (for data storage) Notification preferences 📊 Tracking Metrics Funding amounts and rounds Investor networks Hiring trends Market expansion Product updates 🛠️ Setup & Support Quick Setup Start tracking in 20 minutes with our step-by-step guide 📺 Watch Tutorial 💼 Get Expert Support 📧 Direct Help Gain a competitive edge with automated tracking and analysis of your competitors' activities and strategies.
by Parth Pansuriya
AI-Powered Daily Gmail Digest Summary using LangChain & OpenRouter This n8n template helps you automatically summarize your daily Gmail messages using OpenRouter's GPT model via LangChain. It generates a structured email digest highlighting key information, tasks, issues, and action items — all delivered to your inbox every morning. Who’s it for Busy professionals who want a quick overview of their daily emails Founders or managers needing to track team or client communication Anyone looking to automate inbox triage and reduce time spent on emails How it works / What it does This n8n workflow runs every morning at 7 AM, automatically: Fetches emails from the last 24 hours Collects important fields: sender, subject, and snippets Feeds them into an AI-powered agent (OpenRouter + LangChain) The AI: Extracts key topics, tasks, deadlines, and issues Formats the info clearly with a bullet-point summary Sends the final summarized report to your inbox How to set up Clone or import the workflow into your n8n instance Replace <Your Email ID> in the Code node with your actual Gmail address (or remove if not needed) Ensure your Gmail and OpenRouter credentials are set up in n8n Update the recipient email in the Send Summary node if you want it sent to a fixed address Activate the workflow once tested How to customize the workflow Change Summary Style:** Edit the system message in the LangChain Agent to match your tone (e.g. casual, business, detailed) Adjust Digest Time:** Change the Schedule Trigger to any preferred hour Customize Recipients:** Change or add recipients dynamically or statically in the Gmail send node Filter Email Type:** Modify the Gmail query in the Code node to include filters like from:, is:unread, subject:project
by Jimleuk
This n8n template offers a simple yet capable chatbot assistant who can answer course enquiries over SMS. Given the right access to data, AI Agents are capable of planning and performing relatively complex research tasks to get their answers. In this example, the agent must first understand the database schema, retrieve lists of values before generating it's own query to search over the database. Checkout the example database here - https://airtable.com/appO5xvP1aUBYKyJ7/shr8jSFDaghubDOrw How it works A Twilio trigger gives us the ability to receive SMS input into our workflow via webhook. The message is then directed to our AI agent who is instructed to assist the user and use the course database as reference. The database is an Airtable base. The agent autonomously figures out which tool it needs to use and generates it's own "filter_by_formula" query to search over the available courses. On successful search results, the Agent can then use this information to answer the user's query. The Agent's output is logged in a second sheet of the Airtable base. We can use this later for analysis and lead gen. Finally, the response is sent back to the user through SMS using Twilio. How to use Ensure your Twilio number is set to forward messages to this workflow's webhook URL. Configure and update the course database as required. If you're not interested in courses, you can swap this out for inventory, deliveries or any other data relevant to your business. Ask questions like: "Can you help me find suitable courses to fill my Wednesday mornings?" "Which courses are being instructed by profession Lee?" "I'm interested in creative arts. What courses are available which could be relevant to me?" Requirements Twilio for SMS receiving and sending OpenAI for LLM and Agent Airtable for Course Database Customising this workflow Add additional tools and expand the range of queries the agent is able to answer or assist with. Not using Airtable? This technique also works with SQL databases like PostgreSQL.
by AlexAutomates
Auto-Categorize Outlook Emails with AI in n8n How It Works Trigger: The workflow starts with the Microsoft Outlook Trigger node, polling your inbox every minute for new emails. Extract & Clean Email Content: The email’s key fields (from, subject, isRead, body) are extracted. The body is converted from HTML to Markdown, then sanitized to plain text for reliable AI processing. Node Setup Details: Microsoft Outlook Trigger Resource: Message Operation: Trigger on new email Fields to Output: from, subject, isRead(optional), body Folders to Include: (Set to your Inbox or specific folder IDs) Markdown Node Input: {{$json"body"}} (HTML email body) Output Key: Email Body Markdown Purpose: Converts HTML to Markdown for easier downstream processing. Sanitize Node (Code Node) Input: Email Body Markdown from previous node Purpose: Cleans up Markdown, strips images, links, HTML tags, table formatting, and truncates to 4000 characters. Sample JS Code: // Get the markdown content from the previous node const markdownContent = $input.item.json["Email Body Markdown"]; Setup AI tools Move message and Get Folders Outlook tools are required, get contacts is optional. Set each field in the tools to "defined automatically by the model" and describe each field so the model understands how to use it. OpenRouter or other LLM models tool: You can use any client for this, but make sure to use a model that does well with tool calls (Claude, GPT-4.1, Gemini 2.5 Pro, etc.). Best Practices & Notes AI Prompt Engineering:** The AI is instructed to be conservative—never move emails from real people or saved contacts, and always explain its reasoning if it doesn’t move a message. This automation only works for NEW incoming messages. Inbox Zero:** This system is designed to help you achieve and maintain Inbox Zero by keeping only actionable items in your main inbox. Customization:** You can adjust the folder logic, add more categories, or tweak the AI prompt for your specific needs. Privacy:** All processing happens within your n8n instance; no email data is stored outside your environment except for the AI call (which only receives sanitized, minimal content).